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Stanton and Cowan [1] have discussed the two-dimensional analogue of Fibonacci Numbers. They dealt with 
numbers 

g(n + I r + 1) = g(n + 1, r) + g(n, r+1) + g(n, r) 

g(n,0) = g(0,r) = 1 rfn > O integers. 

Carlitz [2] has discussed in detail a more general form of g(n,r). In this paper we get the Tribonacci Numbers 
from g(n,r) and discuss properties of functions related to Tribonacci Numbers. Analogous identities have been 
established by Alladi [3] for Fibonacci Numbers. Bicknell and Hoggatt [4] have shown another method of 
getting Tribonacci Numbers. 

The numbers g(n,r) can be represented on a lattice as follows: 
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The descending diagonals are denoted by dotted lines. The above figure is transformed into a Pascal-shaped tri-
angle by changing the descending diagonals into rows 

Array 2 Tribonacci Triangle 
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It is interesting to note that the sequence of diagonal sums in the Pascal-shaped triangle is 

1, 1,2,4,7, 13 ,24 ,44 ,81 , - , 

which is the Tribonacci sequence 

Tn = Tn-i + Tn-2+Tn„3, T0 = 0, T1 = 7, T2 = 1. 

We now add variables (suitably )xn,ym on the arrays to make every row a homogeneous function i n * andy. 

^Currently at UCLA. 
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x3 5x2y 5xy2 y3 
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The rising diagonal sums give a sequence of functions Tn with the following rule of formation: 

Tn(x,y) = xTn-l(x,Y) + yTn-2(x,Y) + xyTn-3(x,y) . 

Let us denote the partial derivatives and convolutions by the following 

n 

Tn(*,y) = J2 Tk(x,y)Tn.k(x,y) . 
k=0 

As in the case of Fibonacci Polynomials, do there exist relations between these functions? To get symmetric 
results we denote Tn(x,y) by T*+1(x,y). 

Theorem 1. ^n+1(x/y) + y7^1(xfy) = tn(x,y). 

Theorem 2. 7n(x/y)+x7n-1(xfy) = t*+1(x,yj 

Theorem J, t*+1(x,y)-~ tn(x,y) = xTn-^xy) -yrn-2(x,y). 

Proofs. Theorem 3 follows immediately from Theorems 1 and 2. Since Theorem 2 is similar to Theorem 1 
we prove only Theorem 1. 

To prove Theorem 1 we would essentially have to show 

(D Tn(x,y) + yTn-2(x,y) = tn(x,y). 

Assume that statement holds far; n = Of 7, 2, 3, —, m. From the recurrence relation \wTn(x,y) we see that 

Now 

dTm+1(x,y) dTm(x,y) dTm-i(x,y) . zTm-2(x,y) 
—£T- "" T<n(x>y)+X -Tx~ +y—^— +yT™-2(x,y)+yx —^— ' 

m+1 m-1 

Tm+i(x,y) + yTm-i(x,y) = ]C Tk(x,y)Tm-k+i(x,y) + Y J2 Tk(x,y)Tm-k-i(x,y) 
k=0 k=0 

[ m m-2 "I 

X ) Tk(x,y)Tm-k(x,y)+y £ Tk(x/y)Tm.k.2(x/y)\ 
k=0 k=0 J 
r m-1 m-3 -| 

+ y \ H Tklx,y)Tm-k-1(x,y) + y YJ Tk(xfy)Tm^k-3(x,y)\ 
Lk=0 k=0 J 

[ m-2 m-4 *"| 

2 Tk(x,y)Tm-k-2(xfy) + y £ Tk(x,y)Tm-k-4(x,y)\+g(x,y)+h(x,y) 
k=0 k=0 J 

applying recurrence for Tn(x,y), whereg(x,y) + h(x,y) are the remainder terms from the first and second sum-
mations in each square bracket Now using the recurrence we may simplify g(x,y) and h(x,y) to 

g(x,y) = Tm(x,y), h(x,y) = yTm.2(x,y) 
which makes the right-hand side to be equal to the partial derivative 

*Tm+1(x) 
ax 
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This means (1) holds for/7 = m + 1 and can be verified to hold for/7 = Of 7. By mathematical induction it holds 
for all positive integral values of n. 

We shall now discuss some more properties of the Tribonacci Triangle. If we attach the term xm to every 
member of the (m + Vth row then the generating function of the (n + Vth column is 

Gnix) = xiii±xr 
<1-x)n+1 

so that 

(1) £ GnM= ____! 
n=0 1-2X-X2 

Now (T) clearly indicates that the row sums of the Tribonacci Triangle are Pell-Numbers 

Pn = 2Pn-.1+Pn-2, Po= 0, Pi = /. 
If on the other hand we shifted the (n + 1)*' column n steps downwards and in the new array added the term 
Xm to every member of the (m + Vth row, then the generating function of the (n + Vth column of this array 
would be 

(1-X)n+1 

so that 

(2) 
n=0 1-x-x2-x3 

Now (2) indicates that the rising diagonal sums of array (2) are Tribonacci Numbers. In fact if we attached 
Xm Yr to the (m + l)th ior(r+ Vth column element of the Tribonacci triangle we get the generating function 
of the r/7 -̂  />/f/7 colu mn as 

Gn(XfY) = X?YHll±A)^ 

(1-x)n+1 

1 

so that 

<3> E Gn(X,Y) = 
n=o 1-X-XY-XJY 

which is the two-variable generating function of array (2). We conclude by considering the inverse of the follow-
ing matrix. 

/:, v ' . ' . \ 
1 3 1 = - 1 1 \ 
1 5 5 1 / 2 - 3 1 

\ 1 7 13 7 1 / \ - 6 10 - 5 1 / 
Now denote by nT? the (n + Vth row(r+ Vth column element of 
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1 
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10 
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-5 

Two interesting properties of nT*\stand out 
n 

p.1. ]P nr; = o 
r=0 

n > 1 (= Horn = 0) 
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P. 2. E 
r=0 

\nT?\ {n + U 
(= 1 for n = 0). 

REMARKS. We wish to draw attention to the fact that we obtained Tribonacci Numbers from Stanton and 
Cowan's Diagram. Such a generalization to higher dimensions may be possible but it is very complicated as it is 
exceedingly difficult to picture these numbers. However there are other ways of obtaining these numbers as for 
example Tribonacci numbers from the expansion of (1 +x +x )nW. 
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(6) 

whose determinant is 

(7) D 

C1R1 + C2R2 + C3R3 = 1 

C1R^ + C2R2 + C3R3 = 3 

C1R
3
1+C2R2 + C3R3 = 6 , 

Rl R2 R3 

01 ^2 ^3 
n3 p3 n3 
M1 h2 n3 

= (R1 - R2)(Ri - R3HR2 -R3) = 7 . 

Thus, using Cramer's rule, one obtains constants as 

(8) 

C1 = f ^2^3(^3 ~ R2>16 - 3(R2 + Fl3) + R2R3] 

C2 = j RiR3<Fd-Fl3)[6-3(R1 + R3) + R1R3] 

[ C3 = 1
7 RjR2(R2- R1)[6-3(R1 + R2) + R1R2] 

which reduce simply to the fixed numbers 

(9) C1=L(3-R3), c2=
1

7(3-R1), C3=
1j(3-R2) 

when many discovered relations between the three roots are taken into account. These involve the following. 
Relations between the roots and the coefficient of the cubic gives 

(10) R7 + R2 + R3 = 2, R1R2 + R1R3+R2R3 = -1, R1R2R3 = - I , 

while from the discriminant we have 

(11) (Ri- R2)(R1 - R3)(R2- R3) = s/W = 7. 

Use of these and the relation R1 + R2 + R3 = 6 furnish, after some manipulation, 

(12) 
R7R3 + R2R

2
1 + R3R§ = 4 

R1RI+R2R
2

3 + R3R
2
1 
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