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5. ZERO-ONE SEQUENCES AGAIN
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1. The point of view of the present paper is somewhat different from that in [1]. We shall now consider the
following problem.
Let f(m,n,r,s) denote the number of zero-one sequences of length m +n:

(1.1) (a1,a2, -, am+n) aj = Oor1)
with m zeros, n ones, r occurrences of (00) and s occurrences of (11).
Examples.
.m=3 n=2 r=1 s=20
00 100
(1o 100
(1o o010 £(3,2,1,0) = 4
0100 1)
IWm=4 n=2 r=25s=1
00110 0
000110 74,2,2,1) = 3
01100 0
W.m=4,n=2 r=1s=1 f4,21,1) = 0.

In order to evaluate f(m,n,r,s) it is convenient to define 7j(m,n,r,s$ the number of sequences (1.1) with m
zeros, n ones, r occurrences of (00), s occurrencesof(11) and with a7 =/, where /=0 or 1. [t follows immediate-
ly from the definition that #;(m,n,r,s) satisfies the following recurrences.

folm,n,r,s) = folm—1,n,r—1,5)+f;(m—1,n,1,5)
1.2 { filmn,rs) = folm,n—1,r,5)+f1(mn—1,r,s=1),
wherem > 17, n > 1 and itis understood that
filmn,rs) = 0 (j=00r1)
if any of the parameters/m,n,r,s is negative. We also take

J’ f0(1,0,0,0) = £1(0,1,0,0) = 1

3
(.3) | fol1,0rs) = F1(0.1,r,5) = 0 (r+s > 0)
and
(1.4) f100,0,r,s) = 0 (j=0ori)
forallr,s = 0.

Now put
(1.5) Fi = Filxy,uv) = Z fi(m,n,r,sx"y"u"v®

m,n,r,s=0
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and
(1.6) F = Fix,yuv) = Folx,yuv)+Filxyuv) .

It follows from (1.2), (1.3), (1.4) and (1.5) that
{ Folx,y,uyv) = x +xuFglx,y,uv)+xFq(x,y,uv)

Filxyuv) =y +yFolxy,uv)+yvFlxyuv),
or more compactly
(1—xu)Fg—xFq = x
(1.7) { —yFo+(1—yvIF; =y .
Solving this system of equations we get

_ x(1—yv)+xy
Fo (1—xul(1—yv)—xy

(1.8) F, = xy +y(1—xu)
YA —=xul(1=yv)—xy

Therefore, by (1.6),

_ Xty +2xy — xy(u+v)
(1.9) Floyuv) = =) = xy

In the next place, we have

1 . (xy )X _ m(x k o~ (rtk)(stk s
= = y) ( bu ) (yv)
(1=xu)(1—yv)—xy kgt; (7—Xu)k+7(7—yv)k+7 /E(:) r’sZ=a( k ) k )
oo min(m,n) . i
n m \ m- n-
=X o (R (R
m,n=0 k=0

It then follows from (1.9) that

=

F = z { (m;I) (Z)menum -k-1,n-k , (7{1) (n; 7) me"umk n-k-1
m,n,k
+2(m~7)( ;1)menum k=1 n-k=1 _(mk—’)(";’)xmy"umk"k 1
(1.10) (" 1) (n; I)menum ~k=1,n- k}
_ Z {(m;7) (Z:;)menum ~k-1,n-k , (7(7_—71) (n;7)xmynumk n-k-1
m,n, k
+2(mk_1)(";7)xmy”umk7"k1},
Since

F= 3% fimnrsk™y"u"v*,

it follows from (1.10) that
Z(m_7)("_7) (m—r=n—s)

(1.11) fim,n,r,s) = (m_7) (n5_7) (m—r=n—s+1)

0 (otherwise) .
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This holds for all m,n > 0, exceptm =n = 0. 1 m (orn) = Oclearly f{m,n,r,s) = 0 unless r (ors) = 0.
For example, (1.11) gives

#3210 =2(2) (1) =4

(7
0
_ (3 7\ _
4221 = (5)(;) =3
f4,2,1,1) = 0,
in agreement with the worked examples.
We may now state the following
Theorem 1. The enumerant f{m,n,r,s) is evaluated by (1.11).
The simplicity of this result suggests that one may be able to find a direct combinatorial proof.
2. We now examine several special cases. First, for x =y, (1.9) becomes

2+ 22— x2u+v)

(2.1) Fix,x,uyv) = .
(17— xul(1—xv)—x?
Put
(2.2) finrs) = > flkrs),

jt+k=n

so that f(n,r,s) is the number of zero-one sequences of length n with r occurrences of (00) and s occurrences of
(11). To evaluate #(n,r,s) we make use of (1.11).

It is clear from (1.11) that the only values of /& in (2.2) that we need consider are those satisfying

. [+k =n
(2.3) [ It

j\ j—k=r—s+(0, Tor-1).
Thus, for example, if

(2.4) itk =mn
j—k=r—s,
we must have
(2.5) { n =r+s (mod?2)
nz=|r=s|.
If (2.5) is satisfied it follows that
_ Yoln+r—s)—1\ (%ln—r+s)—1
(2.6) finrs) = 2 (% tr=s)=1) J97T)
provided at least one of the numerators is non-negative.
Similarly, if
(2.7) { j*tk =n
j—k =r—s+1 ~

we must have
(2.8) {nEr+s+7 (mod 2)

n = |\r—s+1)|

and we get
_(¥%n+tr—s+1)—1 Yon—r+s—1)—1
(2.9) fin,rs) = (P00 #r=s ) (s ) .
provided at least one numerant is non-negative.
Finally, if
(2.10) { j+k =n
j—k =r—s—1

we must have
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n =r+s+1 (mod2)
@1 { n=zr—s—1
and we get
_ (% —5— — %(n — P
(2.12) finrs) = (% *r s 1= 1)(%n r+ss+7/ 1)

provided at least one numerant is non-negative.
In all other cases

(2.13) fin,r,s) = 0.
We may state

Theorer 2. The enumerant f(n,r,s) defined by (2.2) is evaluated by (2.6), (2.9), (2.12) and (2.13).

3. We next take v = vin (19) so that

2
) F _ Xty +2xy — 2xyu ]
8.1 bey.uu) (1 —xu)(1—yu) - xy

Define
(3.2) glmnt) = 3~ flmnrs),
rts=t
so that g(m,n,t) is the number of zero-one sequences with m zeros, n ones and ¢ occurrences of either (00) or
(11). As in the previous case we need only consider

r+s =t
(3.3) {m—n=r-—s+(0,70r—7).
We get the following results:
- m—1 n—1
(3.4) glmn,t) = 2 < %(m —n + t)) ( %(—m +n +t) )
provided
m+n =t (mod 2)
(3.5) { Ot e,
(3.6) glmnt) = ( m= 1 n-T
: o Vz(m~n+t+1})(%(~m+n+t—7))
provided
m+n =t+1 (mod 2)
(3.7) { t > m—n+1| ;
- m—1 n—1
(3.8) glmn,t) = (Vz(m—n +t— 7}>(Vz(—m +n+tt 11)
provided
m+n = t+1 (mod 2)
(3.9) { t=Im—n—1]| ,

in all other cases
(3.10) glm,n,t) = 0.
We may state

Theorem 3. The enumerant g(m,n,t), defined by (3.2), is evaluated by (3.4), (3.7), (3.9) and (3.10).

4. Forx=y, u=v, (1.9) reduces to

2 2 .2
(41 ) F(X,X,U,U) = gﬁ_z_)_(___:_zx__q_
(1—-xu)? - x?

Thus

o -1

oo K n
_ (1 =xtu—=1))  _  2x - n n-1_ n n—1y\ t
Flox ) = s T =xta =T~ T=xla 77 an::,x ut1)"1=2 30 x g( )t

~

n=1
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Hence if we put
(4.2) hin) = 3 flikrs),
Jj*+k=n

. rts=t
it follows that

(4.3) hing)=2("77) 0 <t <.

The enumerant A(n,t) can be described as the number of zero-one sequences of length n with ¢ occurrences of
either (00) or (11).
We may state

Theorem 4. The enumeranth(n,t) defined by (4.2) is evaluated by (4.3).

This result can be proved by a combinatorial argument in the following way. Let the symbol x denote any
doublet —either (00) or (11). Thus we are enumerating sequences of length n — ¢

(4.4) (a7, a2, -, an-t),

where each a; is equal to 0, 1 or x. Consecutive zeros and ones are ruled out; also if 0 is followed by x, thenx
stands for (11), while if 1is followed by x, then x stands for (00). Thus we can describe the sequence (4.4) in
the following way. Assume it begins with 0 or (00). Then we have a subsequence (0101 ---) of length rg, follow-
ed by a subsequence (xx -/ of length 57, where the x's denote doublets of the same kind; this is followed by a
subsequence of length r; which is either of the type (0101 -+ ) or (1010 --- ) depending on the x, and so on. By
the subsequence (xxx), for example, we understand (0000) or (1111). Thus, for the sequence,

(010(11101(00)(11) )
we haverg=3,s1=2,r1=2,52=1,r0=0,53=1,r3=0,t=4.
Hence
(4.5) hint) =231,

where the summation is over non-negative rg, ry, -, rx and positive sy, -+, s, such that

(4.6 {ro+r7+-~-+fk+57+"'+5k:”_k
.6) Syt tSe =t (/(:0, 7,2,"‘}-

For t = 0 there is nothing to prove so we assume ¢ > 0. Since

{r0+r1+---;r£;n—k—t}: (n_t)

k
and
SpttSe = 1) ot S = t—k —
#{73/,\»/((7 f=#{57 s,-gﬂ }:(tkj)'
it follows from (4.5) and (4.6) that
t t—1

wnd) =2 (")) 2 ot ) () 2t ) =2 (00T

k=1 k=0
5. Forv =20 (1.9) becomes
(5.1) Flx,y,u,0) = X3V *2Xy = xyu

1—xly +u)
The right-hand side of (5.1) is equal to



54 FIBONACCI NOTES [ FEB.

(x +y +2xy — xyu) Z xM E( ) ym Ny = Z(mr—7)xm m-r-1 r+2( ) m mr+7r

m=0 =0 m,r

-

+2 (mr_ I)mem—rur_ Z (rrn:;) mem—r+7ur
m.r m,r

=E(mr—7)xmmr—7r4z(m—-7)mm—r+7r+22(m—7) =,

m,r
Since
Fix,yu,0) = 3 fmn,r0x™y"u"

m,n,r
it follows that

2('":7) (m—n =r)

flm,n,1,0) :{ (’" - 7) (m—n=rz1).
!
If we take v = 7 in (5.1), we get

-yt
(5.2) Fix,y,1,0) = Xyt

The RHS of (5.2) is equal to

oo 55 8 (2= S{(7 1) () (31 P 0

Hence

m
- (m+1
(5.3) > fmnno) = (727
r=0
Finally, forx =y, (5.2) reduces to

, - -
Flxx1,0) = 22X = (24x) T Fpx = 5 Fpuox”
T—x—x n=1 n=1

where F,,+2 is a Fibonacci number in the usual notation. It follows from (5.3) that

J
(5.4) T Y fkn0) = Friz .
j+k=n r=0
Clearly

m
> ftm,n,r,0)
r=0
is the number of zero-one sequences with m zeros, n ones and doublets {11) forbidden. Similarly
J
Z Z flj, k,r,0)
Jjtk=n r=0

is the number of zero-one sequences of length 7 with (11) forbidden. Thus (5.3) and (5.4) are familiar results.

6. Put
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(6.1)
so that

(6.2)

(6.3)

FIBONACCI NOTES

Fixyuv) = 3 Fyaluvk™y",

m,n=0
m n
Frnluy) = 37 5 fmnrsh'v®,
r=0 s=0
apolynomial in ¢ and v. Thus (1.9) becomes
Xty +(2—u—vixy _ - m.n
7—XU—VV~I7~Ul/Ixy Z Fm,n(U,V)X vy

m,n=0

It follows that

xty+(2—u—vixy = (1—xu—yv—{(1—uvixy) > Fnnluylx™y" .

m,n=0

Comparing coefficients, we get

(6.4)

Frnluv) = uFm_qnluyv) +vFm poqluv) + (1= uv)Fmeq n-1luv)  (m+n > 2).

Itis evident from (6.3) that

(6.5)

Fr,nluy) = Fo miv,ul.

Also, taking y = 0, (6.3) reduces to

Hence

(6.6)

Since

7—_—);7 = E leofu,V)Xm .
m=0

Fm,oluy) = u™ 7 (m > 0)
Fonluy) = v n>0).

F1 1luv) = vFqpluyv) —uFg 1luyv) = 2—u—v,

it follows that

6.7)

F7,1(U,V) =2

Foru=v =1, (6.3) becomes

so that
(6.8)

m,n=0 T=x-y

Fa(11) = ("57)  Am+n > 0).

m

By mans of (1.11) we can evaluate Fp, ,(u,v/ explicitly, namely:

(6.9)

n—1

Fmnluy) = 2 Z (n T:—ji ) (”s- 7) 4SS
s=0

—1
v LR Pt
o=
n-2
D D RS N i B

[

For example, forn =1,

T Py = KL 2 S gk o 3 (MY ey
k

55
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Fon 1(uv) = 201 4 (m = 1)Ju™ (m > 1),
so that
Finluw) = 20" T+ (n = 1)" (n=1).
For m=n we get
m—1 2 m—1 .
(6.10) Fomluv) =2 5 (™71 ) +utv) 35 (72 T)(75T) w)
r=0 r=0

In connection with the recurrence (6.4), it may be of interest to point out that Stanton and Cowan [3] have
discussed the recurrence

(6.11) gln+1,r+1) =gln, r+1)+gln+11r)+gln,r

subject to the initial conditions
g(n,0) = g(0r) = 1 n=>0r=>0).

The more general recurrences

(6.12) Aln,r) = Aln—1,r—1)+q"Aln, r—1)+q"Aln—1,r)
and
(6.13) Aln,r) = Aln—1,r—1)+p"Aln, r—1)+q"Aln -1, 1)

have been treated in [2].
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If the relations (10), (11) and (12) are used, it can be shown that the much simpler expressions for the con-
stants in the explicit solution (2) are indeed given by equations (9).
The generating function for the sequence P, is defined by

(13) G = Z x'P, = Z [C1(xR1) +Co(xR2) +C3(xR3)],
r=0 r=0

If we now make use of the summation of a geometric series, then
€y, L2 . _C3
1T-xR; 1-xR2 1—xR3
_ Cil1—xRoNT1—xR3)+Co(1—xR1)(1—xR3)+C3(1—xR1)(1—xR2)
1—x(Ry+Ro+R3)+x2(R1Ry+R1R3+ 32/?3)——X3/?]/?2/?3
which, upon employing the relations (9), (10), (11) and (12), finally reduces to the simple equation

(14) G =

(15) 6= —Il=X



