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1. The point of view of the present paper is somewhat different from that in [1] . We shall now consider the 
following problem. 

Let f(m,n,r,s) denote the number of zero-one sequences of length m + n: 

(1.1) (ai,a2,-, am+n) (a,- = 0 or 1) 

with m zeros, n ones, r occurrences of (00) and s occurrences of (11). 
Examples. 
I. m = 3, n = 2, r = 1, s = 0 

( 0 0 1 0 0 ) 
( 1 0 1 0 0) 

. ( 1 0 0 1 0) f(3,2,1,0) = 4 
( 0 1 0 0 1 ) 

\\. m = 4, n = 2, r = 2, s = 1 
( 0 0 1 1 0 0 ) 
( 0 0 0 1 1 0 ) f(4,2,2,1) = 3 
( 0 1 1 0 0 0 ) 

111.777=4 n=2, r= /, s= 1 /(4,2,1,1) = 0. 

In order to evaluate f(m,n,r,s) it is convenient to define fj(m,nj,s^ the number of sequences (1.1) with m 
zeros,/7 ones, r occurrences of (00),s occurrences of (11) and with 57 = j, where/= 0 or 1. It follows immediate-
ly from the definition that fj(m,n,r,s) satisfies the following recurrences. 

fo(m,n,r,s) = fgim - 1, n, r- 1, s) + f-jfrn - /, n, r, s) 

(1.3) 

(1 2) 
fi(m,n,r,s) = fo(m, n- 1,r,s) + frfm, n- 1, r,s- 1), 

where m > 1, n > 1 and it is understood that 

fj(m,n,r,s) = O (j = O or V 

if any of the parameters /??,/?,r,s is negative. We also take 

fo(lO,0,0) = fi(0,l,0,0) = 1 

f0(lO,r,s) = fj(0,7,r,s) = 0 (r + s > O) 

and 
(1.4) fi(OfO,r,s) = O (j = Oor 1) 

for all r,s> 0. 
Now put 

(1.5) Fj = Fj(x,y,u,v) = £ fj(m,n,r,s)xmynurvs 

m,n,r,s=0 
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and 
(1.6) F = F(x,y,u,\/) = Fo(xfy,u,v) + Fi(xfy,u,v) . 

It follows from (1.2), (1.3), (1.4) and (1.5) that 

Fo(x,y,uey) = x +xuFo(x,y,u,v) +xFi(x,y,u,i/) 

Fi (x,yfufv) = y +y Fo(x,y,u,v) + yvF i(x,y,ufv), 
or more compactly 

(1 - XU)FQ- xFi = x 

-yF0 + (1-yv)F1 = y . 

Solving this system of equations we get 

(1.7) 

(1.8) 

Therefore, by (1.6), 

(1.9) 

In the next place, we have 
o 

7 _ v-

p x(l - yv) +xy 
0 (1-xu)(1-yv)-xy 

f1 = xy +y(i -xu) 
i (1 - xu)(1 - yv) - xy 

11 - xu)(1 -yv) - xy 

(xy r 
<1-xu)(1-yV)-xy fo (1_xujk+l(1_yvjk+1 k% r % 

°° min(m,n) 

• Z *mvn £ (?) (V) »m-kv"-k 

7 - E M * z ( r r ) ( s D w w 

m,n=0 

It then follows from (1.9) that 

k=0 

F= E { C V ) (n
k)x

mynum'k-1vn-k
+[

m
k) (n~k

 1) xmy"um-kvn~k-7 

k ,{n'k
1)xmynum-kv 

m,n,k 

+ 9 ( m- 1\ in - U vmx/nnm-k-1 n-k-1 {m - 1 \ ( n - 1 x „m ltn„m-kt,n-k-1 
z \ k ) \ k ) x y u v 

(1.10) _ ^ - 7 ) (n-l^xmynum-k-1vn-k^ 

= i {\mk 1) [lZ\)xnVum-k-1vn-k+{m
kZ]) (n~k

1) *mynum-kv"-k-] 

m.n.k 

-2{m~1) ("-1)xmynum-k-1vn-k-1} 

Since 

it follows from (1.10) that 

(1.11) f(m,n,r,s) = < 

F = £ f(m,n,r,s)xmyW , 
m,n,r,s=0 

f 2 ( - - ' ) ( " 7 ? ) (.-r-n-s) 

Cr~1){ns~1) (m-r = n-s±1) 

0 (otherwise). 
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This holds for all m,n > 0, exceptm = n = 0. If m (orn) = 7̂ clearly f(m,n,r,s) = 0 unless r (ors) = 0. 
For example, (1.11) gives 

f(3,2,1,Q) = 2 (2
7) ( M = 4 

f(4,2,2,1) = (3
2) []) = 3 

f(4,2,l,1) = 0, 
in agreement with the worked examples. 

We may now state the following 

Theorem 1. The enumerant tfVfl,/?,/;^ is evaluated by (1.11). 

The simplicity of this result suggests that one may be able to find a direct combinatorial proof. 

2. We now examine several special cases. First, forx = y, (1.9) becomes 

(2.1) F(x,x,u,v) = 2x^~*-kU:vL 
(1 -xu)(1-xv)-x2 

Put 

(2.2) f(n,r,s) = £ f(j,k,r,s) , 
j+k=n 

so that f(n,r,s) is the number of zero-one sequences of length n with r occurrences of (00) and s occurrences of 
(11). To evaluate f(n,r,s)\Ne make use of (1.11). 

It is clear from (1.11) that the only values of/,/: in (2.2) that we need consider are those satisfying 

f j+k=n 
J / - k = r-s + (0, 1or-1). 

(2.3) 

Thus, for example, if 

(2.4) 

we must have 

(2.5) ) n ^r + s (mod 2) 

j + k = n 
j - k = r-s, 

n > \r-s\ . 

If (2.5) is satisfied it follows that 
(2.6) fifties) = 2 { * ( n + r - s ) - 1 ) ^ ( n - r + s)- / ) 

provided at least one of the numerators is non-negative. 
Similarly, if 

(2.7) J j + k = n 
I j-k = r-s + 1 

we must have 

(2.8) 

and we get 
(2.9) Hn,r,s) = ^ M n + r - s + 1 ) - 1 ) {%<n - r+s- D- 1} 

j n = r +s + 1 (mod 2) 
{ n > | r - s + 11 

provided at least one numerant is non-negative. 
Finally, if 

(2.10) f j + k = n 
[ j-k = r-s- 1 , 

we must have 
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/o 11 \ [ n = r + s + 1 (mod 2) 
U ' n i { n > r-s - 1 
and we get 
(2.T2) f(nfrtS} = -1%<n+r-s-1)-1){%(n-r + *+1)-1) # 

provided at least one numerant is non-negative. 
In all other cases 

(2.13) f(n,r,s) = 0. 
We may state 

Theorem 2. The enumeranttf/wJ defined by (2.2) is evaluated by (2.6), (2.9), (2.12) and (2.13). 

3. We next take u = v in (19) so that 
(3.1) F(x,y,u,u) = ?-±y-±2*l-Jxy_ujL . 

(I - xu)(i — yu) - xy 
Define 

(3.2) g(m,n,t) = ] T f(m,n,r,s) , 
r+s=t 

so that g(m,n,t) is the number of zero-one sequences with m zeros, n ones and t occurrences of either (00) or 
(11). As in the previous case we need only consider 

(33) ( r+s = t 
[6'6} I m-n = r-s + (0, 1 o r - / A 

We get the following results: 

provided 
m + n = t (mod 2) 

> \m- n\ 
(3.5) f m + n 

1 t 

<3-6> S(m,n,t) - ( ,A(m X+\+ V ) (y,(-m
n
+-n lt-1,) 

provided 

(3.7) m + n = t+ 1 (mod 2) 
t > \m - n + 1\ 

provided 

(3.9) \m+
t
n m + n = t + 1 (mod 2) 

> \m - n - 1\ 

in all other cases 
(3.10) g(m,n,t) = 0. 

We may state 
Theorem 3. The enumerant^m^fJt defined by (3.2), is evaluated by (3.4), (3.7), (3.9) and (3.10). 
4. Forx = y, u = v, (1.9) reduces to 

(4.1) F(x,x,u,u) = 2x±2x^2££ 
(1 —xu) - x 

Thus 

F(x,x,u,u) = --2fiL^?M^m = f * = 2 V ^ + J)"-1 = 2 T, xn T ( " 7 ' ) uf. 
(1-x(u+1))(1-x(u-1)) J-x(u+V ~ ~ ^ v f ' 
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Hence if we put 

(4.2) h(n,t) = £ f(JXr,s), 
j+k=n 
r+s=t 

it follows that 

(4.3) h(n,t) = 2 [n~ 1 ) (0 < t < n). 

The enumerant h(n,t) can be described as the number of zero-one sequences of length n with t occurrences of 
either (00) or (11). 

We may state 

Theorem 4. The enumeranth(n,t) defined by (4.2) is evaluated by (4.3). 

This result can be proved by a combinatorial argument in the following way. Let the symbol x denote any 
doublet -either (00) or (11). Thus we are enumerating sequences of length n - t: 

(4.4) (a1,a2,-,an-t), 

where each a,- is equal to 0, 1 or*. Consecutive zeros and ones are ruled out; also if 0 is followed byx, thenx 
stands for (11), while if 1 is followed by x, then* stands for (00). Thus we can describe the sequence (4.4) in 
the followingway. Assume it begins with 0 or (00). Then we have a subsequence (0101 •••) of length rg, follow-
ed by a subsequence (xx •••) of length s-j, where thex's denote doublets of the same kind; this is followed by a 
subsequence of length r-j which is either of the type (0101 •••) or (1010 •••) depending on the*, and so on. By 
the subsequence (xxx)f for example, we understand (0000) or (1111). Thus, for the sequence, 

(010(111)01(00X11)) 
we have ro = 3, si = 2, r-\ = 2, S2= 1, r2 = 0,S3= 7, rj= 0, t = 4. 

Hence 

(4.5) h(n,t) = 2^,1, 

where the summation is over non-negative /-#, r/, •••, /> and positive57, •••, Sk such that 

( r0 + rj + - + rk+s1 + -+sk = n-k 
<4"6) •• st + '-' + Sk = t (k = O, 7,2,-t . 

For t = O there is nothing to prove so we assume t > 0. Since 

rg + r-j + •-• + /> = n - k - t 
# {ro+ri+"7ron-k-t} = c-kn 

and 
n { s7 + - + sk = t\ _ jsj + - + sk = t - k \ _ ( t - 1\ 

w \ Si > 0 J " ^ 1 Sj > 0 1 ~ \ k ) ' 

it follows from (4.5) and (4.6) that 

^ - ^ £ C * t ) ( t r ) - ^ E ( B - ^ _ , ) ( V ) - ^ ( ^ 7 - / ) ^ ( , , 7 ; ) 
k=1 ' k=0 

5. For 1/ = Q, (1.9) becomes 

5.1) 

The right-hand side of (5.1) is equal to 

(5.1) F(x,y,uto) = ^±y-t2^---mi 
7 - x(y +u) 
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(x+y+2xy-xyu) £ xm £ ( ? ) / " " V = E C" 7 ' ) x V ^ V ^ E ( ? ) 
AH^O r=0 m,r A: 

x x y u 

„mym-r+1ur 
+2Y,(m;1)xmym-rur-Y.^-1i)*n 

m.r m,r 

- E ("71)xmym'r'1ur
+ E (m7 ' ^ v ^ V ^ E C";1) xmym~rur. 

/?7,A- A77,r m,r 

Since 

F(x,y,u,0) - J ] f(m,n,r,0)xmynur , 
m,n,r 

it follows that 
(2(m~ ; ) (m-n = r) 

f(mfn,r,Q) = } , _ n 
M y - ) (m-n = r±1). 

If we take /y = / in (5.1), we get 

(5.2) F(x,yflO)=^±^-. 
1-x(y+l) 

The RHS of (5.2) is equal to 
oo m 

fr^^E^E(I)A-E((ra;'H;_,)^:/))A"-Er;')A". 
m=0 A?=0 m,n " ™-" 

Hence 
/r? 

(5.3) £ tf^/^fl - ( m ^ / ) -

Finally, forx=y, (5.2) reduces to 

F(x,x,1,0> = - ^ J ^ j = (2+x) £ ^ = £ Fn+2*n > 
1-x-x n=1 n=1 

where Fn+2 is a Fibonacci number in the usual notation. It follows from (5.3) that 

J 

(5.4) J^ £ f('>*>r><» = Fn+2 • 
j+k=n r=0 

Clearly 
m 

£ f(m,n,r,0) 
r=0 

is the number of zero-one sequences with m zeros, n ones and doublets (11) forbidden. Similarly 

E E f(^,o> 
j+k=n r=0 

is the number of zero-one sequences of length n with (11) forbidden. Thus (5.3) and (5.4) are familiar results. 

6. Put 
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(6-1) F(x,y,u,v) = £ Fm,n (u,v)xmYn . 
m,n=0 

so that 
m n 

(6-2) Fm,n(u.v) = Y, E f(m.n,r,s)urvs , 
r=0 s=0 

a polynomial in u and v. Thus (1.9) becomes 

(6.3) ^±y-±!2_=u-Vlxy__ = £ Fmn(u,V)xmyr 

1 - xu -yv - (1 - uvjxv " _ ' 

It follows that 

- xu -yv - (1 - uv)xy 
m,n=o 

x+y + (2-u-v)xy = (1 -xu-yv-(1- uv)xy) £ F
m^(u/v)xmyn . 

Comparing coefficients, we get 

(6.4) Fmfn(u,v) = uFm-itn(u,v) + vFmtn-i(u,v) + (1 - uv)Fm-1rn.1(ufv) (m + n > 2). 

It is evident from (6.3) that 

(6.5) Fmn(u,v) = Fnrm(v,u). 

Also, taking y = 0, (6.3) reduces to 

7 - — = E Fm o(w)xm . 
1 - XU *-* ' 

m=0 
Hence , 
/ c c , J Fmt0(u,v) = um~1 (m > 0) 
m ) \ FQ^U.V) = vn~1 (n > 0). 

Since 
Fii(u,v) - VFIQ(U,V) - UFQI(U,V) = 2 - u - v , 

it follows that 
(6.7) Fh1(u,v) = 2. 

For u = v = 1, (6.3) becomes 

-• - y 
m,n=0 k m+n>Q 

SO that 

(6.8) FmjidD = (m+n) <m+n > °> 

By mans of (1.11) we can evaluate Fmn(u,v) explicitly, namely 

m — 1 \ (n — 1 \ ,,m-n+s,,s 
[n 

s=0 

n-1 

( 6 g ) +j, {m
nZ1

s){
n-1)um~n+s+1vs 

s=0 

s=0 

For example, for/7 = 7, 
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Fm,l(u,v) = 2um'1 + (m- 1)um (m > 1), 
so that 

Fhn(u,v) = 2vn~1 + (n- l)vn (n > 1). 

For m = n we get 
m—1 2 /T7-7 

(6.10) Fm,m(u,V) = 2 £ ( m ; ' ) (uv)' + (u + v) £ [m ~ '){?-, ' ) ^ / . 
r=0 r=0 

In connection with the recurrence (6.4), it may be of interest to point out that Stanton and Cowan [3] have 
discussed the recurrence 

(6.11) g(n + 1,r+ 1) = gfa r+ 1) + g(n + 1, r) + g(n, r) 

subject to the initial conditions 
g(n,0) = g(0,r) = 1 (n > O, r > O). 

The more general recurrences 

(6.12) A(n,r) = A(n - 1,r- l)+qnA(n,r- 1) + qrA(n- 1, r) 

and 

(6.13) Afar) = A(n - l,r- l)+pnA(n,r- 1) + qrA(n- 1,r) 

have been treated in [2] . 
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AAAAAAA 

[Continued from page 45.] 

If the relations (10), (11) and (12) are used, it can be shown that the much simpler expressions for the con-
stants in the explicit solution (2) are indeed given by equations (9). 

The generating function for the sequence Pr is defined by 

(13) G= J > 7 > r « £ fCJ(xR1)
r + C2(xR2)

r+C3(xR3)
r], 

r=0 r=0 

If we now make use of the summation of a geometric series, then 

( 1 4 ) G = JLi— + _£*_ + -J*— 
1-xRj 1-xR2 1-xR3 

= Cl(1~ xR2>(1" xRs> + °2(1 ""xRl)(1 ~ xR3> + °3(1 ~ xRl)(1""xR2> 
1 -x(R1+R2 + R3) +x2(R1R2 + R?R3 + R2R3) - x3R1R2R3 

which, upon employing the relations (9), (10), (11) and (12), finally reduces to the simple equation 

(15) G = j—^^-r-Y -
1 - 2x -x2 +x3 

******* 


