REFERENCES

1. L. Taylor, "Residues of Fibonacci-Like Sequences," The' Fibonacci Quarterly, Vol. 5, No. 3 (Oct. 1967), pp. 298-304.
2. C. C. Yalavigi, "'On a Theorem of L. Taylor," Math. Edn., 4 (1970), p. 105.
thentrer
COMPOSITES AND PRIMES AMONG POWERS OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE

V.E. HOGGATT, JR., and MARJORIE BICKNELLJOHNSON
 San Jose State University, San Jose, California 95192

It is well known that, among the Fibonacci numbers F_{n}, given by

$$
F_{1}=1=F_{2}, \quad F_{n+1}=F_{n}+F_{n-1},
$$

$F_{n}+1$ is composite for each $n \geqslant 4$, while $F_{n}-1$ is composite for $n \geqslant 7$. It is easily shown that $F_{n}^{2} \pm 1$ is also composite for any n, since

$$
F_{n}^{2} \pm 1=F_{n-2} F_{n+2}, \quad F_{n}^{2} \mp 1=F_{n+1} F_{n-1} .
$$

Here, we raise the question of when $F_{k}^{m} \pm 1$ is composite.
First, if $k \not \equiv 0(\bmod 3)$, then F_{k} is odd, F_{k}^{m} is odd, and $F_{k}^{m} \pm 1$ is even and hence composite. Now, suppose we deal with $F_{3 k}^{m} \pm 1$. Since $A^{n}-B^{n}$ always has $(A-B)$ as a factor, we see that $F_{3 k}^{m}-1^{m}$ is composite except when $(A-B)=1$; that is, for $k=1$. Thus,
Theorem 1. $F_{k}^{m}-1$ is composite, $k \neq 3$.
We return to $F_{3 k}^{m}+1$. For m odd, then $A^{m}+B^{m}$ is known to have the factor $(A+B)$, so that $F_{3 k}^{m}+1^{m}$ has the factor ($F_{3 k}+1$), and hence is composite. If m is even, every even m except powers of 2 can be written in the form $(2 j+1) 2^{i}=m$, so that

$$
F_{3 k}^{m}+1^{m}=\left(F_{3 k}^{2 i}\right)^{2 j+1}+\left(1^{2}\right)^{2 j+1}
$$

which, from the known factors of $A^{m}+B^{m}, m$ odd, must have $\left(F_{3 k}^{2}+1\right)$ as a factor, and hence, $F_{3 k}^{m}+1$ is composite.
This leaves only the case $F_{3 k}^{m}+1$, where $m=2^{i}$. When $k=1$, we have the Fermat primes $2^{2^{i}}+1$, prime for $i=0,1,2,3,4$ but composite for $i=5,6$. It is an unsolved problem whether or not $22^{i}+1$ has other prime values. We note in passing that, when $k=2, F_{6}=8=2^{3}$, and $8^{m} \pm 1=\left(2^{3}\right)^{m} \pm 1=\left(2^{m}\right)^{3} \pm 1$ is always composite, since $A^{3} \pm B^{3}$ is always factorable. It is thought that $F_{9}^{4}+1$ is a prime.
Since $F_{3 k} \equiv 0(\bmod 10), k \equiv 0(\bmod 5), F_{15 k^{\prime}}^{2 i}+1=102^{i} \cdot t+1$.
Since $F_{3 k}^{2^{i}} \equiv 6(\bmod 10), i \geqslant 2, k \not \equiv 0(\bmod 5), F_{3 k}^{2^{i}}+1$ has the form $10 t+7, k \neq 0(\bmod 5)$. We can summarize these remarks as
Theorem 2. $F_{k}^{m}+1$ is composite, $k \neq 3$ s, $F_{3 k}^{m}+1$ is composite, $m \neq 2^{i}$.
It is worthwhile to note the actual factors in at least one case. Since

$$
\begin{aligned}
& F_{k+2} F_{k-2}-F_{k}^{2}=(-1)^{k+1} \\
& F_{k+1} F_{k-1}-F_{k}^{2}=(-1)^{k}
\end{aligned}
$$

moving F_{k}^{2} to the right-hand side and then multiplying yields

$$
F_{k-2} F_{k-1} F_{k+1} F_{k+2}=F_{k}^{4}-1
$$

We now note that

$$
F_{k}^{5}-F_{k}=F_{k-2} F_{k-1} F_{k} F_{k+1} F_{k+2}
$$

which causes one to ask if this is divisible by 5 !. The answer is yes, if $k \not \equiv 3(\bmod 6)$, but if $k \equiv 3(\bmod 6)$, then only 30 can be guaranteed as a divisor.

