FEB. 1977

REFERENCES

- 1. L. Taylor, "Residues of Fibonacci-Like Sequences," The Fibonacci Quarterly, Vol. 5, No. 3 (Oct. 1967), pp. 298-304.
- 2. C. C. Yalavigi, "On a Theorem of L. Taylor," Math. Edn., 4 (1970), p. 105.

COMPOSITES AND PRIMES AMONG POWERS OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON San Jose State University, San Jose, California 95192

It is well known that, among the Fibonacci numbers F_n , given by

$$F_1 = 1 = F_2, \quad F_{n+1} = F_n + F_{n-1},$$

 $F_n + 1$ is composite for each $n \ge 4$, while $F_n - 1$ is composite for $n \ge 7$. It is easily shown that $F_n^2 \pm 1$ is also composite for any n, since

$$F_n^2 \pm 1 = F_{n-2}F_{n+2}, \qquad F_n^2 \mp 1 = F_{n+1}F_{n-1}.$$

Here, we raise the question of when $F_k^m \pm 1$ is composite. First, if $k \neq 0 \pmod{3}$, then F_k is odd, F_k^m is odd, and $F_k^m \pm 1$ is even and hence composite. Now, suppose we deal with $F_{3k}^m \pm 1$. Since $A^n - B^n$ always has (A - B) as a factor, we see that $F_{3k}^m - 1^m$ is composite except when (A - B) = 1; that is, for k = 1. Thus,

Theorem 1. $F_k^m - 1$ is composite, $k \neq 3$.

We return to $F_{3k}^m + 1$. For *m* odd, then $A^m + B^m$ is known to have the factor (A + B), so that $F_{3k}^m + 1^m$ has the factor $(F_{3k} + 1)$, and hence is composite. If *m* is even, every even *m* except powers of 2 can be written in the form $(2j + 1)2^{i} = m$, so that

$$F_{3k}^m + 1^m = (F_{3k}^{2'})^{2j+1} + (1^{2'})^{2j+1}$$

which, from the known factors of $A^m + B^m$, m odd, must have $(F_{3k}^{2'} + 1)$ as a factor, and hence, $F_{3k}^m + 1$ is composite.

This leaves only the case $F_{3k}^m + 1$, where $m = 2^i$. When k = 1, we have the Fermat primes $2^{2^i} + 1$, prime for i = 0, 1, 2, 3, 4 but composite for i = 5, 6. It is an unsolved problem whether or not $2^{2^i} + 1$ has other prime values. We note in passing that, when k = 2, $F_6 = 8 = 2^3$, and $8^m \pm 1 = (2^3)^m \pm 1 = (2^m)^3 \pm 1$ is always composite, since $A^3 \pm B^3$ is always factorable. It is thought that $F_9^4 + 1$ is a prime. Since $F_{3k} = 0 \pmod{10}$, $k \equiv 0 \pmod{5}$, $F_{15k}^{2^i} + 1 = 10^{2^i} \cdot t + 1$.

Since $F_{3k}^{2i} \equiv 6 \pmod{10}$, $i \ge 2$, $k \ne 0 \pmod{5}$, $F_{3k}^{2i} + 1$ has the form 10t + 7, $k \ne 0 \pmod{5}$. We can summarize these remarks as

Theorem 2. F_k^m + 1 is composite, $k \neq 3s$, F_{3k}^m + 1 is composite, $m \neq 2^i$.

It is worthwhile to note the actual factors in at least one case. Since

$$F_{k+2}F_{k-2} - F_k^2 = (-1)^{k+1}$$

$$F_{k+1}F_{k-1} - F_k^2 = (-1)^k$$

moving F_k^2 to the right-hand side and then multiplying yields

 $F_{k-2}F_{k-1}F_{k+1}F_{k+2} = F_k^4 - 1.$

We now note that

$$F_k^5 - F_k = F_{k-2}F_{k-1}F_kF_{k+1}F_{k+2}$$

which causes one to ask if this is divisible by 5!. The answer is yes, if $k \neq 3 \pmod{6}$, but if $k \equiv 3 \pmod{6}$, then only 30 can be guaranteed as a divisor.
