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1. INTRODUCTION

In Matijasevic’s paper [1] on Hilbert's Tenth Problem, Lemma 17 states that Fﬁ, divides £, if and only if
Fm divides r. Here, we extend Lemma 17 to its counterpart in Lucas numbers and generalized Fibonacci num-
bers and explore divisibility by higher powers.

In [2], Matijasevic’s Lemma 17 was proved by Hoggatt, Phillips and Leonard using an identity for £, . Since
that proof is the basis for our extended results, we repeat it here.

We leta=(7+/5)/2, §=(1—+/5)/2. Then it is well known that the Fibonacci numbers F,, are given by

_al=p"
(11) Fn (1—6
and that
(1.2) am:aFm’LFm—L Bm:BFm+Fm-1-

Combining (1.1) and (1.2) with the binomial theorem expansion of & and 8" gives

mr mr
a

r k k
Fr = === = 2 (%) Ffﬁﬁf{f;(g-a—:g-)

k=0
so that
d k
(1.3) Fror = 3 (%) FonFrmt1Fic -
k=0
Since Fg= 0 and F,f, divides all terms fork > 2,

Frr = () FmFinl1F1 = rEm P2y (mod F2) .
Since (Fm, Fm-1J=1, it follows easily that
(1.4) F2|Fm, ifand only it Fplr.

2. DIVISIBILITY BY OTHER FIBONACCI POWERS

The proof of (1.4) can easily be extended to give results for divisibility by higher powers.
Since F,‘: divides all terms of (1.3) for k > 3, and since F; = Fo= 1, proceeding in a manner similar to that
of Section 1,

Frr = tF i dy + L) F2 P12, mod £3)

e
When ris odd, (r— 7)/2 = kis an integer, and
Fir = rFmFE2 (Frg # kFpy) (mod F2) .

Since (F,,, Frye1)=1,
Fm {(Fm-1+kFm)  and Fml FL2,,

50 that £ | Fpnif and only if F2 |1,
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If r is even,
F Fr2/(2F 14 (r— 1)Fm) (mod F2).

Fonr =

2
I (Fry, 2Fm-1) = 1, then F,‘;’;\Fm,if and only if Fm |r. Thus, we have proved
Theorem 2.1. Whenever ris odd, F3)|Fpm, iff F2 |r. Whenever £y, is odd, £, | o, iff F2 |7
Sinilarly, since F7=F>=17and F3=2, from (1.3) we can write

For = bty # L1 2 pr2, 0 = 1220 p3 P25 (mod F)

m' m-1

since F,‘,’7 divides every term for k > 4.
ifr=6k+1 then{r— 1)/2=jand (r— 1)(r— 2)/3 =i for integers and /, so that

Fne = tFm Fin3 (F2 1 # jFp Froeg #iF2) (mod F).

As before, since (Fm, Fr-7)= 1, Fib\Fm iff F2 11,
If r = 6k, then

Fonr = b FnFial1(6F 1+ 300 = 1FmFong + 20r = lr=2)FZ) mod £3) .

I (Fim, 6F 1) = 1, then Fry | Fmy iff Fi3 | Note that (Frn, 6) = 71 m # 30, m # 4. The cases r = 6k:+2
and r = 6k £ 3 are similar. Thus, we have proved
Theorem 2.3. Whenever r=6k £ 1, Fih | F,p, i F2 |r. Whenever m #3q, m # 4, Fi| oy ifE F2) | 1.

Continuing in a similar fashion and considering the first terms generated in the expansion of F,,, we could
prove that whenever r= 6k £ 1, orm # 3q, 4q,

Fo\Fm, iff FAlL andalso  FS\Fm, iff F2r,
but the derivations are quite long. In the general case, again considering the first terms of (1.3), we can state
that, whenever r = kfs — 1)/ £ 1, FS | Fpp, iff FS5 7|1,
fractions generated from the binomial coefficients.

We summarize these cases in the theorem below.

Theorem 2.4. Whenever r =6k = 1,
FS\Frmp iff FST

s=1234256.

,

Whenever m # 3q, m # 4g,
/_-S

m

\Fr it FS T\ 5= 1,23456
Whenever r = kfs — 1)/ £ 1,
FS \Fmp it TP,
Next, we make use of a Lemma to prove a final theorem for the general case.
Lemma. 1f s"—”r, then s”k|(kr) k=1 -, n

Proof. Vin<r thenk<n <r. Casesk =1 and k = rare trivial. Case s = 7 is trivial. 15" 7
for some integer A7, and

_ -1 I ' N L
(2)_%(2—7)=_k_(/r<—7)_—ks (2 7>
If r
k-1 -1
then e (2_7) l
n-ky/r
If ) ‘(k)

ks (1 20)
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then

k|Ms9 (r_;), k <q <n,

r
k

Butk <p9 forp>2 and g > k > 0, a contradiction, so that x must divide

Msk_7(2___77), and s"‘kl(Z)

since ( ) is an integer. That is, k = p 9/, where p is some prime.

It is |mp033|ble forn >r. Ifn<r, thens"” 71r implies Ms"~" = r, where n — 7 > r, and where M is an inte-
ger. But s” T rfors> 2, n—1=>r.

7
Theorem. 1f F))'|r, o Fmr-
Proof.

r
e = 3 (1) FoFEE Fi
k=0
If k=35, then F,, divideseach term Since Fp= 0, F,, divides the termk 0. When k=1, the term is rFp F,) 71
(Fr, Fm 7}—7 so that if FS nFs, leldeer Fr 7, If Fs divides r, then Fs d|V|des ( ) for &
=1, - ,shy the Lemma, and F d|V|des each successive term fork =1, .., sincein the k™ torm we always
haveafactorF while Fs'k appears as a factor of ( ) )

These theorems allow us to predict the entry point of Fk in the Fibonacci sequence in limited circumstances.
The entry point of a number n in the Fibonacci sequence |sthe subscript of the first Flbonacm number of which
n is a divisor. When m # 3/ or 4j, the entry point of F in the Fibonacci sequence is mF "fork = 1,2 3 4,5,
oré.

3. DIVISIBILITY BY LUCAS SQUARES

Next, we will derive and extend the counterpart of (1.4) for the Lucas numbers. It is well known that, analo-
gous to (1.1), the Lucas numbers L,, obey

(3.1) Ly = a"+p"
and B
(3.2) RS L. LY

Combining (3.1) and (3.2) with the binomial theorem expansion of " and ™",

mr o, gmr - (___/;Lt_l_t.\_é_g_/frﬁ) ’ + (_LL”_:_\;E/_:’E >r

Ly =

r

= 08" % (0 ) L FRBITT + (=1)7].

j=0
When / is odd, all terms are zero. We let; = 2/ and simplify to write
[r/2] S
83 Lo 2™ = 5 (5) LRPFRS
=0

All terms on the right of (3.3) are divisible by L,f, except the last term, j = [r/2]. |f r= 2t the last term is

2t 0 22t t _ 2t
(2r) Lo Foist = 5T,
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Since 5 f L,y for any m and Ly, f Fpy forany m > 17, L,f, ,{Zr"ILm,, m > 1. However, if r= 2t + 1, the
last term is

(PP 1) L FRISE = (204 105 L F2L,

and 2 ' (2¢41)m is divisible by L if and only if Lpy|(2t + 1), m > 1. lf m # 3qg, then (L, 2) =1,
and Lm\Lm(gtﬂ; if and only if Lm|(2t+ 1). 1fm= 3q, then L, is even, so that

L £ (2t+ 1), and Ly ){2 U (2e41)m. m > 1.
Return to (3.3) and notice that, when r =2t + 7, all terms except the last are divisible by L,‘f,, so that
L3 Ly ifF L2V (2t41), m > 1.

We summarize these results as
Theorem 3.1. Whenever r is odd,

and $Lm, iff Lm|r

Whenever r is even, Lm )(Lm, m>11fm= 3q > 1, then Lm /fLmr forany r.

We can also determine criteria for divisibility of L,,, by F and Fp, by L . Itis trivial that F2 m A Lmrfo
m#1,2, 3,4, since Fp, f Ly, for other values of m. To determine when Lm 5 Fmy. return to (3.1) and (3. 2)
and use (1.1) and the binomial expansion of @ and 8" to write an expression for F,,, in terms of L . (Re-
call that\/5 =a—8.)

SEFmy = a™ = g™ = (Lm+2\/§/-'m)’_ <Lm_2\/‘5‘,_-m>r

r . . . .
= ()" ;‘] (;) Lo BV (1= (=1)'] .
j=

Here, whenever/ is even, all terms are zero. Setting/ = 2/ + 7 and rewriting, we obtain

[rr2] _ .
\/EFmr = () E (2,+7) L,/;;Z’ 1F57/+7.(\/§}2/+1_2
=0
[r/2]
(3.4) 2r_7Fmr - E <21+7> Lr—2/—7F2/+7 50
=0

Notice that, when r=2t+ 1, Li divides all terms of (3.4) forj < [r/2]. When/ = [r/2] =t the last term is

2t + 1 0 [2t+1 pt _ ptp2t+1
wh|ch is not divisible by Ly, m > 1, since Ly [ Fpp, m > 1, and Ly, )(5tfor any t > 0. Thatis, if r is odd,
m)(Fmrforanym > 1.
However, when r is even, L divides all terms of (3.4) for/ < [r/2] — 1. |f r = 2¢ then the terms/=¢— 1
and / =t give

2t 2t-1,t-1 -1 2t gt _ 2t-1 t-
(5:2%;) LmFRTT55 T+ ) Lot FAT15E = (200, F 155 T 4 0.

(2t+7
Now,
Ln{Fm, m > 1, and L K557, > 1.

Thus, L2 | 2257 F ooy ifand only if L, | 2t If Ly, is odd,
L2 | Fome iff o, L2 |Fmr iff Lyl

The same result holds for L., even, which case depends upon the fact that 4 is the largest powerdf 2 that
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divides the Lucas sequence. If L, is even, m = 3q. If m is even, L, contains exactly one factor of 2, while
Fmr = F(3q)(2t) = Fer contains at least three factors of 2, since Fg = 2% is a factor of Fge. 1 m = 3qg is odd,
then L, contains exactly two factorsof 2, and L, ‘Zt iff t = 25 for some |nteger5 making Frmy = Fr2gs, a mul-
tiple of F 75 = 144 = 2%.32, [ Thus, for L, even, if L2427 Fopy, then L2 | Fray.

Notice that, since also L divides all terms of (3. 4) for reven and / < [r/Z] — 1, it can be shown in the same
manner that )

LI\ Fp iff L20r  or, L3 | Fome iff L2 1.
We summarize these results as follows.

Theorem 3.2. |friseven,
L2\ Fop iff Ly |1,

and m|Fm, iff Lmlr
Further,
LE |\ Fome iff Lyp\t  and L3\ Fome iff L2 ]2,

fris odd, L2 Frmp, m > 1.

4. GENERALIZED FIBONACCI NUMBERS
The Fibonacci polynomials f, (x) are defined by
folx) = 0, f1lx) = 1, foe1(x) = xFolx) +fooqlx),
and the Lucas polynomials L, (x) by
Lolx) = 2, Lilx) = x, Lpt1(x) = xLp(x)+ Lp-1(x).

Since (1.3) is also true if we replace £, by 7, (x) (see [2] ), we can write

(4.1) Fplx) = zr (%) K K () (x).
k=0

Notice that Fp; = £y (1) and L,y = Ly (7). The Pell numbers 1, 2,5, 12,29, 70, -, Py, -+, Pny1=2Pn +Pp_y,
are given by P, = f,(2). Thus, (4.1) also holds for Pell numbers, which leads us to

Theorem 4.1. For the Pell numbers Py, P2 | P, iff Py | .

Similarly, since (3.3) and (3.4) hold for Lucas and Fibonacci polynomials, if the Lucas-analogue R, of the
Pell numbers is given by R, = Pp47 +Pp-q, then L,(2) = R, and we can write, eventually,

Theorem 4.2. \frisodd, B2 | Ry iff Ry | 1. 1f ris even, B2, | P, iff B | 1.

We could write similar theorems for other generalized Fibonacci numbers arising from the Fibonacci
polynomials.

5. DIVISIBILITY BY FIBONACCI PRIMES

From [3], [4] we know thata prime p|Fp-7 or p|Fp+7 depending upon ifp = 5k £ 7 orp = 5k £ 2. Forex-
ample, 13| F74, but, note that the prlme13 enters the Fibonacci sequence earlier than that, since F,=13. From
p| Fp+7 one can easily show that p \F 24p, but squares of primes which are also Fibonacci numbers divide the
sequence earlier than that |e , F7 =13, and 732|F97 = F7.13, where of course, F7. 73 < F132473. Ifpisa
Fibonacci prime, |fp =F2 ]Fm, then p|r and the smallest such r is p itself, so thatp2|Fmp If p = Fy, then
m <p £ 1since Fpi., >p forp > 4. Thus, Fmp <Fprup-

Are there other primes than Fibonacci primes for WhICh Jij |F , n<plp £1)?



8 DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES FEB. 1977

REFERENCES

1. Yu V. Matijasevi¢, “Enumerable Sets are Diophantine,” Proc. of the Academy of Sciences of the USSR, Vol.
11 (1970), No. 2.

2. V. E. Hoggatt, Jr., John W. Phillips, and H. T. Leonard, Jr., “Twenty- Four Master ldentities,”” The Fibon-
acci Quarterly, Vol. 9, No. 1 (Feb. 1971), pp. 1-17.

3. V.E. Hoggatt, Jr., and Marjorie Bicknell, “Some Congruences of the Fibonacci Numbers Modulo a Prime p,’
Mathematics Magazine, Vol. 47, No. 4 (September-October 1974), pp. 210-214.

4. G.H.Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford University Press,
1960.

’

Jofoioiodoiok

LETTER TO THE EDITOR

March 20, 1974
Dear Sir:
| would like to contribute a note, letter, or paper to your publication expanding the topic presented below.
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as
the sides increase:
(1) 3,4,5,—-21,20,29 - 119, 120, 169 — ---.

Following is another sequence of such “Pythagorean’ triangles, the smallest angle approximating 30 degrees
as the sides increase:
(2) 15, 8,17—209, 120, 241-2911, 1680, 3361 — 23408, 40545, 46817 — 564719, 326040, 652081 ---

The scheme for generating these sequences resembles that for generating the Fibonacci sequence 1, 2, 3, 5,
and so on.
Let gx and g7 be any two positive integers, g, > gk—-7 - Then, as is well known,

2 2 2, 2
(3) 9% — Jik-1- 29k9k-1. and g * gk-q

are the sides of a Pythagorean triangle.
Now let m and n be two integers, non-zero, and let

@) Gk+1 = NGk + MYk-1
to create a sequence of g's.

1fg7=192=2 m=1n=2 substitution in (4) and (3) gives the triangle sequence in (1) above.

Ifgy=1 go=4, m=—1,n=4, the resulting triangle sequence is (2) above.

If the Fibonacci sequence itself is used (m = n = 7), a triangle sequence results in which the ratio between the
short sides approximates 2:1.

In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the
legs, or of the hypotenuse to one leg, approximates any given positive rational number p/ (o and ¢ positive
non-zero integers, p > g). ltis easy to obtain m and  and good starting values g7 and g2 given p/g, and there is
more to the topic besides, but | shall leave all that for another communication.

For all | know, this may be an old story, known for centuries.

However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9,
Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such
triangle sequences, unless | missed it in a hasty reading. He obtains sequence (1) above by a different method
(Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given
angle in the first quadrant (Chap. 13); but again, the method differs from the one | have outlined.

[Continued on page 10.]



