REFERENCES

1. Yu V. Matijasevič, "Enumerable Sets are Diophantine," Proc. of the Academy of Sciences of the USSR, Vol. 11 (1970), No. 2.
2. V. E. Hoggatt, Jr., John W. Phillips, and H. T. Leonard, Jr., "Twenty-Four Master Identities," The Fibonacci Quarterly, Vol. 9, No. 1 (Feb. 1971), pp. 1-17.
3. V.E. Hoggatt, Jr., and Marjorie Bicknell, "Some Congruences of the Fibonacci Numbers Modulo a Prime p," Mathematics Magazine, Vol. 47, No. 4 (September-October 1974), pp. 210-214.
4. G.H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th Ed., Oxford University Press, 1960.

LETTER TO THE EDITOR

March 20, 1974
Dear Sir:
I would like to contribute a note, letter, or paper to your publication expanding the topic presented below.
Following is a sequence of right triangles with integer sides, the smaller angles approximating 45 degrees as the sides increase:
(1)
$3,4,5,-21,20,29-119,120,169-\cdots$.
Following is another sequence of such "Pythagorean" triangles, the smallest angle approximating 30 degrees as the sides increase:
(2) $15,8,17-209,120,241-2911,1680,3361-23408,40545,46817-564719,326040,652081 \ldots$

The scheme for generating these sequences resembles that for generating the Fibonacci sequence $1,2,3,5$, and so on.
Let g_{k} and g_{k-1} be any two positive integers, $g_{k}>g_{k-1}$. Then, as is well known,

$$
\begin{equation*}
g_{k}^{2}-g_{k-1}^{2}, \quad 2 g_{k} g_{k-1}, \quad \text { and } \quad g_{k}^{2}+g_{k-1}^{2} \tag{3}
\end{equation*}
$$

are the sides of a Pythagorean triangle.
Now let m and n be two integers, non-zero, and let

$$
\begin{equation*}
g_{k+1}=n g_{k}+m g_{k-1} \tag{4}
\end{equation*}
$$

to create a sequence of g 's.
If $g_{1}=1, g_{2}=2, m=1, n=2$, substitution in (4) and (3) gives the triangle sequence in (1) above.
If $g_{1}=1, g_{2}=4, m=-1, n=4$, the resulting triangle sequence is (2) above.
If the Fibonacci sequence itself is used ($m=n=1$), a triangle sequence results in which the ratio between the short sides approximates 2:1.
In general, it is possible by this means to obtain a sequence of Pythagorean triangles in which the ratio of the legs, or of the hypotenuse to one leg, approximates any given positive rational number p / q (p and q positive non-zero integers, $p \geqslant q$). It is easy to obtain m and n and good starting values g_{1} and g_{2} given p / q, and there is more to the topic besides, but I shall leave all that for another communication.

For all I know, this may be an old story, known for centuries.
However, Waclaw Sierpinski, in his monograph Pythagorean Triangles (Scripta Mathematica Studies No. 9, Graduate School of Science, Yeshiva University, New York, 1962), does not give this method of obtaining such triangle sequences, unless I missed it in a hasty reading. He obtains sequence (1) above by a different method (Chap. 4). He shows also how to obtain Pythagorean triangles having one angle arbitrarily close to any given angle in the first quadrant (Chap. 13); but again, the method differs from the one I have outlined.

[Continued on page 10.]

