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INTRODUCTION
Recently, W. Schmidt proved the following theorem.

Schmidt’s Theorem. Let 1, a7, as be algebraic real numbers, linearly independent over £, and let
€ > 0. There are only finitely many integers g such that
(1) “qa;” ”qag“ < c;q‘Fe,
where ¢ is a positive constant and where | | denotes the distance from the nearest integer.

Of course, this theorem can be used to prove that certain numbers are transcendental. We shall take a 7 equal
to the golden number. The integers ¢ will be chosen in the sequence of Fibonacci numbers. It remains only to
take a number ao such that lgas | is small for these values of ¢ and such that 1, ay, a» are @-linearly indepen-
dent. We shall give only one example of such a number a2 but the proof shows clearly that there are many other
possible choices of a5.

THE RESULT

Proposition. Let(uy,up, ) be the sequence of Fibonacci numbers. Put g, = U - Then the number
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is transcendental.

Proof. It is well known and easily proved that
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Since upjuzp, qn divides g,+7. Hence,
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where p,,"is an integer.
Now, it is easily proved that
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From (2) and (3), we get 15
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where ¢ is a positive constant.
We have verified that (1) holds with e= 1.
It remains only to show that 1, a7, a, are linearly independent aver 2. Suppose that we can find a non-trivial
relation
ko+kga;+koar = 0, /(,'Eﬂ.
We can now limit ourselves to the case of k; & Z. For large V, the previous relation gives

kilanarl = tk2lgnazl -
This contradicts (2} and (3). Thus, 1,37, a2 are &-linearly independent, Now Schmidt's theorem shows that as
is not algebraic. The assertion is proved.
REMARK. The proposition remains true if we put
n n
=X -V
u .
" -y
where x is a quadratic Pisot number and y its conjugate.
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[Continued from page 14.]

For small integers 7 the positive solutions of (1) may be found with a machine because of the upper bound of
n? on the coardinates. For n = 3 these solutions are exactly those revealed in the general case. That s, (3,3,3)
and permutations of (1,2,3).

in the complementary case (that is, some coordinate is negative), there are, for each n > 7, always an infinite
number of solutions. For example, fa,7,—a/J, for any integer a, satisfies (1) in casen = 3. Forn =4, (a, a,~a, —a)
satisfies (1), etc. Forn = 3 the solution will be a subset of the solutions of

X‘,?+xg+xg = u2,
an identified problem [1, p. 566].

In case n = 2 the reader will have no difficulty in showing that all sotutions are (a, —al, (1,2}, (2, 1), (2, 2}
together, of course, with (0, 0), (0, 7), (1, 0) which come from the case n = 7. The case n = 2 is a special case of
a well known theorem [1, p. 412 et seq.].
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