sequence S_{1}, the first divisors of successive columns were $1,2,6,20,70, \ldots$, the central column of Pascal's triangle which gave rise to the Catalan numbers originally. For S_{2}, they are $1,4,21,120, \cdots$, which diagonal of Pascal's triangle yields S_{2} upon successive division by $(3 j+1), j=0,1,2, \cdots$, and $S_{2}^{2}=\{1,2,7,60, \cdots\}$ upon successive division by $1,2,3,4, \cdots$. For S_{3}, the first divisors are $1,6,45, \cdots$, which produce $S_{3}^{3}=\{1,3,15,91, \cdots\}$, upon successive division by $1,2,3,4, \cdots$.

REFERENCES

1. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Catalan and Related Sequences Arising from Inverses of Pascal's Triangle Matrices," The Fibonacci Quarterly, Vol. 14, No. 5, pp. 395-404.
2. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Pascal, Catalan, and General Sequence Convolution Arkays in a Matrix," The Fibonacci Quarterly, Vol. 14, No. 2, pp. 136-142.

[Continued from page 66.]

ON THE N CANONICAL FIBONACCI REPRESENTATIONS OF ORDER N

$$
x^{N}-\sum_{i=0}^{N-1} x^{i}
$$

for some $N \geqslant 2$. Then

$$
a^{N+i}=\sum_{k=0}^{N-1} F_{N, i}^{k} a^{N-k}, \quad i=1,2,3, \cdots
$$

Proof. The case $i=1$ amounts to $F_{N, 1}^{k}=1, k=0,1, \cdots, N-1$. If the theorem is true for some $i \geqslant 1$, then

$$
a^{N+i+1}=\sum_{k=0}^{N-1} F_{N, i}^{k} a^{N-k+1}=\sum_{k=0}^{N-2} F_{N, i}^{k+1} a^{N-k}+F_{N, i}^{0} a^{N+1}=\sum_{k=0}^{N-2}\left(F_{N, i}^{k+1}+F_{N, i}^{0}\right) a^{N-k}+F_{N, i}^{0}
$$

Now

$$
F_{N, i}^{k+1}+F_{N, i}^{O}=F_{N, i+k+1}-\sum_{i=0}^{k} F_{N, i+j}+F_{N, i}=F_{N, i+1+k}-\sum_{j=0}^{k-1} F_{N, i+1+j}=F_{N, i+1}^{k} .
$$

Also $F_{N, i}=F_{N, i+1}^{N-1}$, so the above equation reduces to

$$
a^{N+i+1}=\sum_{k=0}^{N-1} F_{N, i+1}^{k} a^{N-k} .
$$

REFERENCES

1. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations of Higher Order," The Fibonacci Quarterly, Vol. 10 (1972), pp. 43-70.
2. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations of Higher Order II," The Fibonacci Quarterly, Vol. 10 (1972), pp. 71-80.
3. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., "Fibonacci Representations," The Fibonacci Quarterly, Vol. 10 (1972), pp. 1-28.
