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Our aim in what follows is to show how Fibonacci representations play a role in determining winning moves 
for Wythoffs Nim [1, 2] very analogous to the role of binary representations in Bouton's Nim [3 ] . The partic-
ulars of these two games can be found in the preceding references, but for the convenience of the reader, we 
briefly recount the rules of play. 

In Bouton's Nim (usually referred to simply as nim) two players alternate picking up from a given collection 
of piles of counters (such as stones or coins). In his turn, a player must pick up at least one counter, so is never 
allowed a "pass." All counters picked up in one turn must come from a single pile, although the selection of 
pile can be changed from turn to turn. The number of counters picked up is constrained above by the size of 
the selected pile, but is otherwise an open choice on each move. The player who makes the last move (picking 
up the last counter) is declared the winner. 

In Wythoffs Nim, only two piles are involved. On each turn a player may move as in Bouton's Nim, but has 
the added option of picking up from both piles, provided he picks up an equal number of counters from the 
two piles. As in Bouton's Nim, the winner is the player who makes the last move. 

As has been known since Wythoffs original paper [1 ] , the strategy for Wythoffs Nim consists of always leav-
ing the opponent one of a sequence of pairs 

(1,2), (3,5), (4,7) , -

which are defined inductively. Generating formulas have been found for these pairs, but they involve computa-
tions with irrational quantities. 

Thus a certain inequity is seen to exist with regard to the computation of play for the two games. In Bouton's 
Nim it is possible to determine correct play solely on the basis of the cardinalities of the constituent piles by 
way of their binary representations; no other information is necessary. In contrast, the traditional play of 
Wythoffs Nim requires having or computing the table of "safe" pairs to an appropriately advanced position. An 
analogous approach to playing Bouton's Nim would require the inductive generation of safe configurations up 
to an appropriately advanced stage, a process which, although altogether well-defined and straightforward, is 
quite complex in that case. 

Recent researches into Fibonacci representations [4, 5, 6, 7 and more] have coincidentally turned up the safe 
pairs for Wythoffs Nim as being quite fundamental to the analysis of the Fibonacci number system. An immed-
iate and explicit by-product of these investigations is a method of computing moves for Wythoffs Nim using 
Fibonacci representations. Ostensibly, this method places the two games on an equal footing with respect to 
the computation of play; in fact, there is a residual disparity, related to the Fibonacci representations. At the 
present time, the determination of Fibonacci representations requires a listing or calculation of Fibonacci num-
bers to an appropriately advanced stage, a calculation which resembles the very aspect of the present method 
which we might hope to eliminate. In the case of binary representations, a succession of divisions provides the 
needed representations, eliminating the necessity of computing tables of powers of 2. The existence and/or de-
termination of an analogous algorithm for the determination of Fibonacci representations is therefore a related 
question of interest in what follows. 

As has been stated, the method we are about to describe is an explicit consequence of the material in [4] and 
[5]., Our contribution consists of making available a description and proof of the method which is self-contained, 
and on the same level as Bouton's treatment [1] . This will remove the necessity for a good deal of background 
which might otherwise exclude this information from many to whom this same information will be comprehen-
sible in its present form. QP. 
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We begin by reviewing some basic facts about the Fibonacci number system. A Fibonacci representation con-
sists of a finite sequence of zeroes and ones, read positionally from right to left. A one in \\\eitfl position de-
notes the presence of the Ith Fibonacci number F,-, where we adopt the convention Fl = 1, F2 = 1, F3 = 2 and 
so forth. The number represented is determined by summing the Fibonacci numbers whose presence is indicated 
by a one. Thus 100000 denotes F6 =8, 11000 denotes f5 + F4 = 8 and 10101 denotes F5 + F3 + Fx= 8. Clear-
ly uniqueness is not generally assured. 

A Fibonacci representation is said to be canonical if it satisfies two conditions: (i) the representation contains 
no adjacent ones and (ii) Fx is not present (although F2 may be) meaning that there is not a one in the first posi-
tion. The canonical form turns out to exist and to be unique for each positive integer and is the representation 
resulting from the following algorithm: given n, determine the largest F^ < n and place a 1 in position k. Repeat 
for the residue n - F^ and continue to repeat, driving the residue to zero. (Be sure to denote the number 1 by 
F2 instead of Fu if it is needed.) Of course, the F; not used correspond to zeroes in the canonical representation. 

A Fibonacci representation is said to be second canonical if it satisfies condition (i) of the canonical represen-
tation and in addition (ii)' the right-most one of the representation is in an odd-numbered position. The second 
canonical form turns out to exist and to be unique for each positive integer and is the representation resulting 
from the following algorithm: given n, determine the canonical representation of n - 1 and then add 1 "in 
Fibonacci," meaning that any pair of adjacent ones is rounded up to a single one in the position immediately to 
the left of the pair. In the case of 8, 100000 is the canonical representation and 10101 is the second canonical 
representation. 

The canonical and second canonical Fibonacci representations are lexicographic, which means the following. 
If m and n are positive integers, then m < n iff the left-most position in which the canonical Fibonacci represen-
tations of m and n differ contains a one in the representation of n and a zero in that of m. The same is also true 
of the second canonical Fibonacci representations. What this amounts to is this: just as in the case of conven-
tional bases, one can determine the larger of two numbers "at sight" by comparing their representations. 

If the reader is willing to accept the assertions we have made concerning the canonical and second canonical 
Fibonacci representations, we can produce an otherwise complete account of the winning strategy for Wythoffs 
Nim. 

We begin with some definitions. Let n be a positive integer which is represented canonically (not necessarily 
second canonically) in Fibonacci. We shall call n an A-number if the right-most one in the representation of n 
occurs in an even-numbered position; otherwise we call n a B-number. Obviously every positive integer is either 
an A-number or a B-number, but never both. 

Let a and b be positive integers, a < b. The pair (a,b) will be called a safe pair if the following two conditions 
are satisfied: (i) the smaller numbers is an /l-number and (ii) the canonical Fibonacci representation of b is 
equal to that of a with a zero adjoined at the right end. For convenience we also agree to consider (0,0) a safe 
pair. Thus, for example, (12, 20) is a safe pair, since in canonical Fibonaccithisis written (101010,1010100). 
Notice that if (a,b) is a safe pair other than (0,0), b must be a ^-number. A pair which is not safe is unsafe. 

We shall prove the following two theorems. 

Theorem 1. If (a,b) is a safe pair, then every pair (c,d) which is derived from (a,b) by a legal move is unsafe. 

Theorem 2. If (c,d) is an unsafe pair, then there exists a safe pair (a,b) derivable from (c,d) by a legal 
move. 

Since (0,0) is a safe pair, it is clear that the winning strategy for Wythoffs Nim consists of always leaving one's 
opponent a safe pair. Thus the first player who can establish a safe pair is the winner, provided he continues to 
play correctly. 

We introduce one last bit of terminology for convenience. Given any Fibonacci representation, the left shift 
of that representation is the representation obtained by adjoining a zero at the right end. The right shiftIs the 
representation obtained by deleting the digit at the right end. We now prove some lemmas which will consider-
ably expedite the proofs of the theorems. 

Lemma 1. If (a,b) is any safe pair different from (0,0), the right shift of the canonical representation of a 
yields the second canonical representation of b — a. 
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Proof. Clearly the right shift of any /l-number is in second canonical form. Thus we need only show that 
the right shift of a represents b - a. Each one in the representation of b is equivalent to a pair of ones in the 
two immediately adjacent positions on its right. (This is simply a way of saying that Fn = Fn--j + Fn-2 if /7 >3, 
and since b is a ^-number in canonical form, the position of each one is 3 or greater.) 

Suppose we denote the right shift operation by ->. From the preceding remark, it is clear that 

b = ~b+T . 
By the definition of a safe pair, b is the canonical representation of a, so this equation is the same as 

b = a + a , 
which is the desired conclusion. 

Now let <- denote the left shift. 

Lemma 2. For each positive integer n, there is exactly one safe pair (an, bn) with bn - an = n. If n is rep-

resented in second canonical form, then an =ATand bn = a~n = n~, with an and bn in canonical form. 

Proof. Let (a,b) and (a',b') be safe pairs with b - a = b''- a'' = n. By Lemma 1, if a and a are represented 
canonically, both ?and a' are the second canonical representation of /7. But the latter is unique and thus the 
canonical representations of the /l-numberss and a'are identical. It follows that there can be no more than one 
safe pair (an, bn) with b - a = n for a given n. 

Clearly the left shift of any second canonical representation is the canonical representation of an /l-number. 

Therefore, given any positive integer nf set an = ATand bn =/7~with n in second canonical form to obtain a safe 
pair (an, bn) such that bn - an = n. 

Lemma 2 has the following corollary. 

Corollary. If m < n then am < an and bm < bn . 

Proof. Fibonacci representations are lexicographic. 

Since no Anumber can be a ^-number, this corollary yields another. 

Corollary. Each positive integer belongs to exactly one safe pair. 

Proof of Theorem 1. Let (an, bn) be a safe pair. By the rules of the game, a legal move must either re-
duce an or bn alone or reduce both an and bn by the same amount. If an alone is reduced, the resultant pairstill 
contains bn so cannot be safe by the preceding corollary; likewise \ox bn. If both an and bn are reduced to ob-
tain a pair (a,b), then b - a = bn - an, so that (a,b) cannot be safe because of Lemma 2. 

Proof of Theorem 2. Suppose that (a,b) is an unsafe pair. If a = b, the pair can be reduced to the safe 
pair (0,0). If a ? b we assume a < b. Represents and b canonically. If a is a ^-number, reduce/? to ~a. If a is an 
/4-number and b > a~, reduce b to a~. If a is an /l-number and b < a~, then b - a <a~- a. Let/7? = b - a > 0 and 
n = a~- a, so m < n and (a,*a) = (an, bnl By the corollary, am <an = a, so that a can be reduced to am. An 
equal reduction in b necessarily produces bm, since by definition, (am, bm) is the unique safe pair with 
bm~ 3m= m. 

If we put together the proof of Theorem 2 and the statement of Lemma 2, we arrive at the following specific 
algorithm for playing Wythoff s Nim. 

0„ Given a pair (a,b), represents and b canonically in Fibonacci. If (a,b) is a safe pair, concede (if you think 
your opponent knows what he is doing). Otherwise, proceed to 1. 

1. If the smaller number of the pair is a ^-number, reduce the larger to that quantity represented by the right 
shift of the canonical Fibonacci representation of the smaller. 

2. If the smaller number of the pair is an /l-number, and if in addition the larger number of the pair exceeds 
that quantity represented by the left shift of the canonical representation of the smaller, reduce it to the latter 
quantity. 

3. If neither 0, 1 nor 2 holds, determine the second canonical Fibonacci representation of the positive dif-
ference of the members of the pair. A left shift on this representation will produce an /l-number and another 
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left shift will produce a ^-number, the two of which constitute a safe pair obtainable from (a,b) by the reduc-
tion of a and b by an equal amount. 

We conclude by illustrating each of these cases. Suppose a = 10, b= 15. Then in canonical form, a = 100100 
and/? = 1000100. Thus a is a ̂ -number (case 1) so we reduce/? to?= 10010. The result is the safe pair (6,10). 

Suppose a=9,b = 20. Then a= 100010 and b= 1010100. Here a is an /^-number with t= 1000100, which is 
less than b by inspection (case 2). We therefore reduce /? to ^obtaining the safe pair (9, 15). 

Suppose a = 24, b = 32. In canonical form, a = 10001000 and b = 10101000. Here a is an /1-number with 
a~= 100010000 > /? (case 3). Hence we compute b - a = 8. The canonical representation of 7 is 10100 so the 
second canonical representation of 8 is 10101. This gives the canonical representation 101010 for as and 
1010100 for/?8, yielding the safe pair (12, 20), which is obtained by reducing both 24 and 32 by 12. 

FINAL NOTE. We are indebted to Mr. Martin Gardner who furnished the additional reference [10] upon 
reading a preprint of this manuscript. References [11, 12, 13] are cited in [10]. The connection with Fibonacci 
representations we have discussed is given (in very definite form) in [12] and is generalized in [10]. However, 
in neither case is the connection with second canonical representations discussed, which is the key to actual 
computation of play. In this connection reference [13] is usable, but more complicated than the second can-
onical approach herein. 
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