A FORMULA FOR $\sum_{1}^{n} F_{k}(x) y^{n-k}$ AND ITS GENERALIZATION
 TO r-BONACCI POLYNOMIALS

M. N. S.SWAMY
Sir George Williams University, Montreal, P.Q., Canada

1. INTRODUCTION

Some years ago, Carlitz [1] had asked the readers to show that

$$
\begin{equation*}
\sum_{0}^{n-1} F_{k} 2^{n-k-1}=2^{n}-F_{n+2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{n-1} L_{k} 2^{n-k-1}=3\left(2^{n}\right)-L_{n+2} \tag{2}
\end{equation*}
$$

where F_{n} and L_{n} are the $n^{\text {th }}$ Fibonacci and Lucas numbers. Recently, King [2] generalized these results to obtain the expressions:

$$
\begin{equation*}
\sum_{0}^{n-1} T_{k} y^{n-k-1}=\frac{\left(T_{O V}+T_{-1}\right) y^{n}-T_{n} y-T_{n-1}}{y^{2}-y-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{0}^{n-1} T_{k} 2^{n-k-1}=T_{2}\left(2^{n}\right)-T_{n+2} \tag{4}
\end{equation*}
$$

where the generalized Fibonacci numbers T_{n} are defined by

$$
T_{n}=T_{n-1}+T_{n-2}, \quad T_{1}=a, \quad T_{2}=b
$$

The purpose of this article is to generalize these results to sums of the form $\Sigma F_{k}(x) y^{n-k}, \Sigma L_{k}(x) y^{n-k}$, $\Sigma H_{k}(x) y^{n-k}$, where $F_{k}(x), L_{k}(x)$ and $H_{k}(x)$ are, respectively, Fibonacci, Lucas and generalized Fibonacci Polynomials, and then finally to extend these results to r-bonacci polynomials.

2. FIBONACCI AND LUCAS POLYNOMIALS AS COEFFICIENTS

The Fibonacci polynomials $F_{n}(x)$ are defined by [3]

$$
\begin{equation*}
F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x) \tag{5}
\end{equation*}
$$

with $F_{O}(x)=0, F_{1}(x)=1$. Now consider the sum

$$
\begin{aligned}
S= & \sum_{1}^{n} F_{k}(x) y^{n-k}=y^{n-1}+x y^{n-2}+\sum_{3}^{n}\left[x F_{k-1}(x)+F_{k-2}(x)\right] y^{n-k} \\
& =y^{n-1}+x y^{n-2}+x y^{-1} \sum_{2}^{n-1} F_{k} y^{n-k}+y^{-1} \sum_{1}^{n-2} F_{k} y^{n-k} \\
& =y^{n-1}+x y^{-1}\left\{S-F_{n}(x)\right\}+y^{-2}\left\{S-F_{n-1}(x) y-F_{n}(x)\right\}
\end{aligned}
$$

$$
\left(y^{2}-x y-1\right) S=y^{n+1}-y F_{n+1}(x)-F_{n}(x)
$$

Letting
(6)

$$
G_{n}(x, y)=y^{n+1}-y F_{n+1}(x)-F_{n}(x)
$$

we may write S as
(7)

$$
S=\sum_{1}^{n} F_{k}(x) y y^{n-k}=\frac{G_{n}(x, y)}{G_{1}(x, y)^{\prime}}, \quad G_{1}(x, y) \neq 0
$$

The Lucas polynomials $L_{n}(x)$ are defined by [3]

$$
\begin{equation*}
L_{n}(x)=x L_{n-1}(x)+L_{n-2}(x) \tag{8}
\end{equation*}
$$

with $L_{0}(x)=2, L_{1}(x)=x$.
It may be shown by induction or otherwise that
Hence,

$$
L_{n}(x)=F_{n+1}(x)+F_{n-1}(x)
$$

$$
\begin{aligned}
\sum_{1}^{n} L_{k}(x) y^{n-k} & =\sum_{1}^{n} F_{k+1}(x) y^{n-k}+\sum_{1}^{n} F_{k-1}(x) y^{n-k}=\sum_{2}^{n+1} F_{k}(x) y^{n+1-k}+\sum_{0}^{n-1} F_{k}(x) y^{n-1-k} \\
& =\sum_{1}^{n+1} F_{k}(x) y^{n+1-k}+\sum_{1}^{n-1} F_{k}(x) y^{n-1-k}-F_{1}(x) y^{n}=\frac{G_{n+1}(x, y)+G_{n-1}(x, y)}{G_{1}(x, y)}-y^{n}
\end{aligned}
$$

using (7)

$$
=\frac{x y^{n+1}+2 y^{n}-y\left\{F_{n+2}(x)+F_{n}(x)\right\}-\left\{F_{n+1}(x)+F_{n-1}(x)\right\}}{G_{1}(x, y)} .
$$

Therefore
(9)

$$
\sum_{1}^{n} L_{k}(x) y^{n-k}=\frac{x y^{n+1}+2 y^{n}-y L_{n+1}(x)-L_{n}(x)}{y^{2}-x y-1}
$$

By letting $x=1, y=2$ in results in (7) and (9), we obtain

$$
\begin{equation*}
\sum_{1}^{n} F_{k} 2^{n-k}=2^{n+1}-F_{n+3}=2^{n} \cdot F_{3}-F_{n+3} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1}^{n} L_{k} 2^{n-k}=2^{n+2}-L_{n+3}=2^{n} \cdot L_{3}-L_{n+3} \tag{11}
\end{equation*}
$$

which are the results of Carlitz [1]. Further, by letting $x=y=2$ in (7) we get

$$
\begin{equation*}
\sum_{1}^{n} P_{k} 2^{n-k}=P_{n+2}-2^{n+1}=P_{n+2}-2^{n} \cdot P_{2} \tag{12}
\end{equation*}
$$

where P_{n} is the $n^{\text {th }}$ Pell number.

3. GENERALIZED FIBONACCI POLYNOMIALS AS COEFFICIENTS

Let us define the generalized Fibonacci polynomials $H_{n}(x)$ as

$$
\begin{equation*}
H_{n}(x)=x H_{n-1}(x)+H_{n-2}(x) \tag{13}
\end{equation*}
$$

with $H_{0}(x)$ and $H_{1}(x)$ arbitrary. It is obvious that the polynomials $F_{n}(x)$ are obtained by letting $H_{0}(x)=0$, $H_{1}(x)=1$, while the Lucas polynomials $L_{n}(x)$ are obtained by letting $H_{0}(x)=2$ and $H_{1}(x)=1$. In fact, it can be established that $H_{n}(x)$ is related to $F_{n}(x)$ by the relation

Hence,

$$
H_{n}(x)=H_{1}(x) F_{n}(x)+H_{0}(x) F_{n-1}(x)
$$

$$
\begin{aligned}
\sum_{1}^{n} H_{k}(x) y^{n-k} & =H_{1}(x) \sum_{1}^{n} F_{k}(x) y^{n-k}+H_{0}(x) \sum_{1}^{n} F_{k-1}(x) y^{n-k} \\
& =H_{1}(x) \frac{G_{n}(x, y)}{G_{1}(x, y)}+H_{0}(x) \sum_{1}^{n-1} F_{k} y^{n-1-k}, \text { using (7) } \\
& =\frac{H_{1}(x) G_{n}(x, y)+H_{0}(x) G_{n-1}(x, y)}{G_{1}(x, y)}
\end{aligned}
$$

The right-hand side may be simplified to show that

$$
\begin{equation*}
\sum_{1}^{n} H_{k}(x) y^{n-k}=\frac{H_{1}(x) y^{n+1}+H_{0}(x) y^{n}-y H_{n+1}(x)-H_{n}(x)}{y^{2}-x y-1} \tag{14}
\end{equation*}
$$

Some special cases of interest obtainable from (14) are,

$$
\begin{gathered}
\sum_{1}^{n} H_{k}(x) \cdot x^{n-k}=H_{n+2}(x)-x^{n} H_{2}(x), \quad \sum_{1}^{n} H_{k}(x)=\frac{1}{x}\left[H_{n+1}(x)+H_{n}(x)-H_{1}(x)-H_{0}(x)\right], \\
\sum_{1}^{n}(-1)^{k+1} H_{k}(x)=\frac{1}{x}\left[(-1)^{n+1}\left\{H_{n+1}(x)-H_{n}(x)\right\}+\left\{H_{1}(x)-H_{0}(x)\right\}\right] .
\end{gathered}
$$

It should be noted that by letting $x=1, H_{0}(x)=a$ and $H_{1}(x)=b$ in (13), we generate the generalized Fibonacci numbers H_{n} defined earlier by Horadam [4]. From (14) it is seen that for these generalized Fibonacci numbers
and

$$
\begin{equation*}
\sum_{1}^{n} H_{k} y^{n-k}=\frac{b y^{n+1}+a y^{n}-H_{n+1} \cdot v-H_{n}}{y^{2}-y-1} \tag{15}
\end{equation*}
$$

(16)

$$
\sum_{1}^{n} H_{k} 2^{n-k}=(2 b+a) 2^{n}-H_{n+3}=2^{n} \cdot H_{3}-H_{n+3}
$$

which are the results obtained by King [2].

4. r-BON ACCI POLYNOMIALS AS COEFFICIENTS

The r-bonacci polynomials $F_{n}^{(r)}(x)$ have been defined by Hoggatt and Bicknell [5] as

$$
F_{-(r-2)}^{(r)}(x)=\ldots=F_{-1}^{(r)}(x)=F_{0}^{(r)}(x)=0, \quad F_{1}^{(r)}(x)=1, \quad F_{2}^{(r)}(x)=x^{r-1},
$$

and
(17)

$$
F_{n+r}^{(r)}(x)=x^{r-1} F_{n+r-1}^{(r)}(x)+x^{r-2} F_{n+r-2}^{(r)}(x)+\cdots+F_{n}^{(r)}(x) .
$$

Let us now consider

$$
I=\sum_{1}^{n} F_{k}^{(r)}(x) y^{n-k}
$$

Denoting for the sake of convenience
(18)

$$
F_{k}^{(r)}(x)=R_{k}
$$

we have,

$$
\begin{aligned}
& I=R_{1} y^{n-1}+x^{r-1} R_{1} y^{n-2}+\left(x^{r-1} R_{2}+x^{r-2} R_{1}\right) y^{n-3}+\cdots+\left(x^{r-1} R_{r-1}+x^{r-2} R_{r-2}+\cdots+x R_{1}\right) y^{n-r} \\
& +\sum_{r+1}^{n}\left(x^{r-1} R_{k-1}+x^{r-2} R_{k-2}+\cdots+R_{k-r}\right) y^{n-k}=R_{1} y^{n-1}+x^{r-1} y^{-1}\left[R_{1} y^{n-1}+R_{2} y^{n-2}+\cdots+R_{r-1} y^{n-r+1}\right] \\
& \\
& +x^{r-2} y^{-2}\left[R_{1} y^{n-1}+R_{2} y^{n-2}+\cdots+R_{r-2} y^{n-r+2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { A FORMULA FOR } \sum_{i}^{n} F_{k}(x) y^{n-k} \text { AND } \\
& +x y^{-(r-1)}\left[R_{1} y^{n-1}\right]+x^{r-1} y^{-1} \sum_{r}^{n-1} R_{k} y^{n-k}+x^{r-2} y^{-2} \sum_{r-1}^{n-2} R_{k} y^{n-k} \\
& +\ldots+x y^{-(r-1)} \sum_{2}^{n-r+1} R_{k} y^{n-k}+y^{-r} \sum_{1}^{n-r} R_{k} y^{n-k} .
\end{aligned}
$$

[FEB.

Hence,

$$
\begin{aligned}
I y^{r}= & R_{1} y^{n+r-1}+(x y)^{r-1} \sum_{1}^{n-1} R_{k} y^{n-k}+(x y)^{r-2} \sum_{1}^{n-2} R_{k} y^{n-k} \\
& +\cdots+x y \sum_{1}^{n-r+1} R_{k} y^{n-k}+\sum_{1}^{n-r} R_{k} y^{n-k} \\
= & R_{1} y^{n+r-1}+\left[(x y)^{r-1}+(x y)^{r-2}+\cdots+(x y)+1\right] l \\
& -(x y)^{r-1} R_{n}-(x y)^{r-2} \sum_{n-1}^{n} R_{k} y^{n-k}-\cdots \\
& -(x y) \sum_{n-r+2}^{n} R_{k} y^{n-k}-\sum_{n-r+1}^{n} R_{k} y^{n-k} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\prime\left[y^{r}-\sum_{0}^{r-1}(x y)^{k}\right]=R_{1} y^{n+r-1} & -y^{r-1}\left(x^{r-1} R_{n}+x^{r-2} R_{n-1}+\cdots+R_{n-r+1}\right) \\
& -y^{r-2}\left(x^{r-2} R_{n}+x^{r-3} R_{n-1}+\cdots+R_{n-r+2}\right) \\
& -y^{r-3}\left(x^{r-3} R_{n}+x^{r-4} R_{n-1}+\cdots+R_{n-r+3}\right) \\
& -\cdots-y\left(x R_{n}+R_{n-1}\right)-R_{n}
\end{aligned}
$$

Denoting now

$$
\begin{aligned}
G_{n}^{(r)}(x, y)=y^{n+r-1} & -F_{n+1}^{(r)}(x) y^{r-1}-y^{r-2} \cdot\left[x^{r-2} F_{n}^{(r)}(x)+x^{r-3} F_{n-1}^{(r)}(x)+\cdots+F_{n-r+2}^{(r)}(x)\right] \\
& -y^{r-3}\left[x^{r-3} F_{n}^{(r)}(x)+x^{r-4} F_{n-1}^{(r)}(x)+\cdots+F_{n-r+3}^{(r)}(x)\right] \\
& -\cdots-y\left[x F_{n}^{(r)}(x)+F_{n-1}^{(r)}(x)\right]-F_{n}^{(r)}(x)
\end{aligned}
$$

we have

$$
\begin{equation*}
I=\sum_{1}^{n} F_{k}^{(r)}(x) \cdot y^{n-k} \frac{G_{n}^{(r)}(x, y)}{G_{1}^{(r)}(x, y)} . \tag{20}
\end{equation*}
$$

The above result for r-bonacci polynomials may be considered as a generalization of the result (7) for Fibonacci polynomials.
Let us now see if we can obtain for the r-bonacci numbers [5], a result corresponding to (10) for Fibonacci numbers; it may be noted that the r-bonacci numbers $F_{n}^{(r)}$ are obtained by letting $x=1$ in (17). We have from (20) that

$$
\begin{equation*}
\sum_{1}^{n} F_{k}^{(r)} \cdot 2^{n-k}=\frac{G_{n}^{(r)}(1,2)}{G_{1}^{(r)}(1,2)} \tag{21}
\end{equation*}
$$

Now we have from (19),

$$
\begin{aligned}
2^{n+r-1}-G_{n}^{(r)}(1,2)= & 2 \cdot 2^{r-2} F_{n+1}^{(r)}+2^{r-2}\left[F_{n}^{(r)}+\cdots+F_{n-r+2}^{(r)}\right]+2^{r-3}\left[F_{n}^{(r)}+\cdots+F_{n-r+3}^{(r)}\right]+\ldots+ \\
& +2\left[F_{n}^{(r)}+F_{n-1}^{(r)}\right]+F_{n}^{(r)}=
\end{aligned}
$$

$$
\begin{aligned}
&= 2^{r-2} F_{n+1}^{(r)}+2^{r-2}\left[F_{n+2}^{(r)}\right]+2^{r-3}\left[F_{n}^{(r)}+\cdots+F_{n-r+3}^{(r)}\right]+\cdots+2\left[F_{n}^{(r)}+F_{n-1}^{(r)}\right]+F_{n}^{(r)} \\
&=2^{r-3}\left[F_{n+2}^{(r)}+F_{n+1}^{(r)}\right]+2^{r-3}\left[F_{n+2}^{(r)}+F_{n+1}^{(r)}+F_{n}^{(r)}+\cdots+F_{n-r+3}^{(r)}\right]+2^{r-4}\left[F_{n}^{(r)}+\cdots+F_{n-r-3}^{(r)}\right] \\
&+\cdots+2\left[F_{n}^{(r)}+F_{n-1}^{(r)}\right]+F_{n}^{(r)} \\
&=2^{r-3}\left[F_{n+3}^{(r)}+F_{n+2}^{(r)}+F_{n+1}^{(r)}\right]+2^{r-4}\left[F_{n}^{(r)}+\cdots+F_{n-r+3}^{(r)}\right]+2\left[F_{n}^{(r)}+F_{n-1}^{(r)}\right]+F_{n}^{(r)} .
\end{aligned}
$$

Continuing the process, the above may be reduced as

$$
2^{n+r-1}-G_{n}^{(r)}(1,2)=2^{r-r}\left[F_{n+r}^{(r)}+\cdots+F_{n+1}^{(r)}\right]=F_{n+r+1}^{(r)} .
$$

Hence,

$$
\begin{equation*}
G_{n}^{(r)}(1,2)=2^{n+r-1}-F_{n+r+1}^{(r)} . \tag{22}
\end{equation*}
$$

Also
(23)

$$
\begin{aligned}
G_{1}^{(r)}(1,2) & =2^{r}-\sum_{0}^{r-1} 2^{k} \\
& =2^{r}-\frac{1-2^{r}}{1-2}=1
\end{aligned}
$$

Therefore from (21), (22) and (23) we get

$$
\sum_{1}^{n} F_{k}^{(r)} \cdot 2^{n-k}=2^{n+r-1}-F_{n+r+1}^{(r)}=2^{n} \cdot F_{r+1}^{(r)}-F_{n+r+1}^{(r)}
$$

The above result may be considered as a generalization, for the r-bonacci numbers, of the result of Carlitz [1] for the Fibonacci numbers.

REFERENCES

1. L. Carlitz, Problem B-l35, The Fibonacci Quarterly, Vol. 6, No. 1, 1968, p. 90.
2. B.W. King, "A Polynomial with Generalized Fibonacci Coefficients," The Fibonacci Quarterly, Vol. 11, No. 5, 1973, pp. 527-532.
3. V. E. Hoggatt, Jr., and M. Bickne!l, "Roots of Fibonacci Polynomials," The Fibonacci Quarterly, Vol. 11, No. 3, 1973, pp. 271-274.
4. A. F. Horadam, "'A Generalized Fibonacci Sequence," Amer. Math. Monthly, Vol. 68, 1961, pp. 455-459.
5. M. Bicknell and V. E. Hoggatt, Jr., "Generalized Fibonacci Polynomials," The Fibonacci Quarterly, Vol. 11, No. 5, 1973, pp. 457-465.
