Thus

$$
S T\left(N_{k+1}\right) \cdot S T\left(N_{j+1}\right)
$$

$$
S T\left(W_{k, 1}\right)=L_{2 k+2}-2+2 F_{2 k}+2\left(F_{2}+F_{4}+\cdots+F_{2 k-2}\right)
$$

and, if $j \geqslant 2$,

$$
S T\left(W_{k, j}\right)=L_{2 k+2 j}-2+2 F_{2 k} F_{2 j}+2 F_{2 j}\left(F_{2}+F_{4}+\cdots+F_{2 k-2}\right)+2 F_{2 k}\left(F_{2}+F_{4}+\cdots+F_{2 j-2}\right)
$$

Simple Fibonacci identities reduce these equations to the desired formula.

REFERENCES

1. D. C. Fielder, "Fibonacci Numbers in Tree Counts for Sector and Related Graphs," The Fibonacci Quarterly, Vol. 12 (1974), pp. 355-359.
2. F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969.
3. A. J. W. Hilton, "The Number of Spanning Trees of Labelled Wheels, Fans and Baskets," Combinatorics, The Institute of Mathematics and its Applications, Oxford, 1972.

* ** * $\star \star$

THE DIOPHANTINE EQUATION $\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}=x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}$

W. R. UTZ

University of Missouri - Columbia, Mo.

The Diophantine equation
(1)

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{2}=x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}
$$

has the non-trivial solution $x_{i}=i$ as well as permutations of this n-tuple since

$$
\sum_{i=1}^{n} i=n(n+1) / 2 \quad \text { and } \quad \sum_{i=1}^{n} i^{3}=n^{2}(n+1)^{2} / 4
$$

Also, for any $n, x_{i}=n$ for all $i=1,2, \cdots, n$, is a solution of (1). Thus, (1) has an infinite number of non-trivial solutions in positive integers.
On the other hand if one assumes $x_{i}>0$, then for each i one has $x_{i}<n^{2}$. To see this, let a be the largest coordinate in a solution $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Then,

$$
x_{1}+x_{2}+\cdots+x_{n} \leqslant n a .
$$

For the same solution

$$
x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3} \geqslant a^{3}
$$

and so $a \leqslant n^{2}$. Thus, we see that for a fixed positive integer, n, equation (1) has only a finite number of solutions in positive integers and we have proved the following theorem.
Theorem. Equation (1) has only a finite number of solutions in positive integers for a fixed positive integer n but as $n \rightarrow \infty$ the number of solutions is unbounded.
Clearly if $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a solution of (1) wherein some entry is zero, then one has knowledge of a solution (1) for $n-1$ and so, except for $n=1$, we exclude all solutions with a zero coordinate hereafter.

[Continued on page 16.]

