14. L. Motz (Columbia Univ.), letter to the author dated 17 Nov., 1975.
15. A. E. Roy and M. W. Ovenden, Mon. Not. Roy. Astr. Soc., Vol. 114 (1954), p. 232; Vol. 115 (1955), p. 296.
16. W. E. Greig, The Fiboancci Quarterly, Vol. 14 (1976), p. 129.
17. W. E. Greig, letter to H. W. Gould dated 30 Aug., 1973.
18. Z. Kopal, The Solar System, 1972, Oxford University Press, London.
19. J. J. Thomson, James Clerk Maxwell, A Commemoration Volume, 1931, Cambridge University Press, Cambridge, England.
20. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publ., New York, 1961, p. 30 (trans. of Chisla fibonachchi, 1951).

 BINET'S FORMULA GENERALIZED

A. K. WHITFORD

Torrens College of Advanced Education, Torrensville, 5031, South Australia

Any generalization of the Fibonacci sequence $\left\{F_{n}\right\}=1,1,2,3,5,8,13,21, \cdots$ necessarily involves a change in one or both of the defining equations

$$
\begin{equation*}
F_{1}=F_{2}=1, \quad F_{n+2}=F_{n+1}+F_{n} \quad(n \geqslant 1) \tag{1}
\end{equation*}
$$

Here, however, we seek such a generalization indirectly, by starting with Binet's formula

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}} \quad(n \geqslant 1)
$$

instead of (1). Suppose we define, for any positive integer p, the sequence G_{n} by

$$
\begin{equation*}
G_{n}=\frac{\left(\frac{1+\sqrt{p}}{2}\right)^{n}-\left(\frac{1-\sqrt{p}}{2}\right)^{n}}{\sqrt{p}} \quad(n \geqslant 1) \tag{2}
\end{equation*}
$$

Thus $\left\{G_{n}\right\}=\left\{F_{n}\right\}$ in the case $p=5$. We can also write

$$
\begin{equation*}
G_{n}=\frac{a^{n}-\beta^{n}}{\sqrt{\bar{p}}} \quad(n \geqslant 1) \tag{3}
\end{equation*}
$$

where

$$
a=\frac{1+\sqrt{p}}{2}, \quad \beta=\frac{1-\sqrt{p}}{2}
$$

are roots of the equation

$$
\begin{equation*}
x^{2}-x-\left(\frac{p-1}{4}\right)=0 \tag{4}
\end{equation*}
$$

Corresponding to (1), we now have the equations

$$
\begin{equation*}
G_{1}=G_{2}=1, \quad G_{n+2}=G_{n+1}+\left(\frac{p-1}{4}\right) G_{n} \quad(n \geqslant 1) . \tag{5}
\end{equation*}
$$

Proof. Clearly $a-\beta=\sqrt{p}$ and $a+\beta=1$, so that (3) implies

$$
G_{1}=\frac{a-\beta}{\sqrt{p}}=1, \quad G_{2}=\frac{(a-\beta)(a+\beta)}{\sqrt{\bar{p}}}=1 .
$$

[Continued on page-14.]

