3. David Lee Hilliker, "A Study in the History of Analysis up to the Time of Liebniz and Newton in regard to Newton's Discovery of the Binomial Theorem. Second part, Contributions of Archimedes," The Mathematics Student, Vol. XLII, No. 1 (1974), pp. 107-110.
4. David Lee Hilliker, "A Study in the History of Analysis up to the Time of Liebniz and Newton in Regard to Newton's Discovery of the Binomial Theorem. Third part, Contributions of Cavalieri," The Mathematics Student, Vol. XLII, No. 2 (1974), pp. 195-200.
5. David Lee Hilliker, "A Study in the History of Analysis up to the Time of Liebniz and Newton in Regard to Newton's Discovery of the Binomial Theorem. Fourth part, Contributions of Newton," The Mathematics Student, Vol. XLII, No. 4 (1974), pp. 397-404.
6. David Lee Hilliker, "On the Infinite Multinomial Expansion," The Fibonacci Quarterly, Vol. 15, No. 3, pp. 203-205.
7. David Lee Hilliker, "On the Infinite Multinomial Expansion, II," The Fibonacci Quarterly, Vol. 15, No. 5, pp. 392-394.

* * *

[Continued from page 21.]
Also, since a and β satisfy (4), we have the equations

$$
a^{n+2}=a^{n+1}+\left(\frac{p-1}{4}\right) a^{n}, \quad \beta^{n+2}=\beta^{n+1}+\left(\frac{p-1}{4}\right) \beta^{n} \quad(n \geqslant 1)
$$

Therefore, using (3), it follows that

$$
\begin{aligned}
G_{n+2} & =\frac{a^{n+2}-\beta^{n+2}}{\sqrt{\bar{p}}}=\frac{a^{n+1}+\left(\frac{p-1}{4}\right) a^{n}-\beta^{n+1}-\left(\frac{p-1}{4}\right) \beta^{n}}{\sqrt{\bar{p}}} \\
& =\frac{a^{n+1}-\beta^{n+1}}{\sqrt{\bar{p}}}+\left(\frac{p-1}{4}\right) \frac{a^{n}-\beta^{n}}{\sqrt{\bar{p}}}=G_{n+1}+\left(\frac{p-1}{4}\right) G_{n}
\end{aligned}
$$

Thanks to (5) it is now a simple matter (despite the complicated appearance of (2)) to generate terms of the sequence $\left\{G_{n}\right\}$, for any choice of p. Assuming that we are interested only in integer-valued sequences, (5) tells us to take p of the form $4 k+1$; namely $p=1,5,9,13,17, \cdots$. Thus the first five such sequences start as follows:

p	$\frac{p-1}{4}$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{9}	G_{10}	\ldots
1	0	1	1	1	1	1	1	1	1	1	1	\ldots
5	1	1	1	2	3	5	8	13	21	34	55	\ldots
9	2	1	1	3	5	11	21	43	85	171	341	\ldots
13	3	1	1	4	7	19	40	97	217	508	1159	\ldots
17	4	1	1	5	9	29	65	181	441	1165	2929	\ldots

We can use the above table to guess at various properties of the generalized Fibonacci sequence $\left\{G_{n}\right\}$, especially if our knowledge of $\left\{F_{n}\right\}$ is taken into account. Generalizations of some of the better-known properties of $\left\{F_{n}\right\}$ are listed below. Of course, in each case, the original result may be found by taking

$$
p=5, \quad \frac{p-1}{4}=1 \quad \text { and } \quad G_{n}=F_{n} .
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{G_{n+1}}{G_{n}}=\frac{1+\sqrt{\bar{p}}}{2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
G_{n} \cdot G_{n+2}-G_{n+1}^{2}=(-1)^{n+1}\left(\frac{p-1}{4}\right)^{n} \quad(n \geqslant 1) \tag{ii}
\end{equation*}
$$

[Continued on page 29.]

