9. Problem B-74, Posed by M. N. S. Swamy, The Fibonacci Quarterly, Vol. 3, No. 3 (Oct., 1965), p. 236; Solved by D. Zeitlin, ibid., Vol. 4, No. 1 (Feb. 1966), pp. 94-96.
10. Problem H-83, Posed by Mrs. W. Squire, The Fibonacci Quarterly, Vol. 4, No. 1 (Feb., 1966), p. 57; Solved by M. N. S. Swamy, ibid., Vol. 6, No. 1 (Feb., 1968), pp. 54-55.
11. Problem H-135, Posed by J. E. Desmond, The Fibonacci Quarterly, Vol. 6, No. 2 (April, 1968), pp. 143144; Solved by the Proposer, ibid., Vol. 7, No. 5 (Dec. 1969), pp. 518-519.
12. Problem H-172, Posed by David Englund, The Fibonacci Quarterly, Vol. 8, No. 4 (Dec., 1970), p. 383; Solved by Douglas Lind, ibid., Vol. 9, No. 5 (Dec., 1971), p. 519.
13. Problem B-285, Posed by Barry Wolk, The Fibonacci Quarterly, Vol. 12, No. 2 (April 1974), p. 221; Solved by C. B. A. Peck, ibid., Vol. 13, No. 2 (April 1975), p. 192.

*

[Continued from page 24.]

(iii)

$$
\left(\frac{p-1}{4}\right) G_{n}^{2}+G_{n+1}^{2}=G_{2 n+1} \quad(n \geqslant 1)
$$

(iv)

$$
G_{n+2}^{2}-\left(\frac{p-1}{4}\right)^{2} G_{n}^{2}=G_{2 n+2} \quad(n \geqslant 1)
$$

(v)

$$
G_{n}=\sum_{r=0}^{n-1}\binom{n-1-r}{r}\left(\frac{p-1}{4}\right)^{r} \quad(n \geqslant 1)
$$

(vi)

$$
\left(\frac{p-1}{4}\right) \sum_{r=1}^{n} G_{r}=G_{n+2}-1 \quad(n \geqslant 1)
$$

The proofs of the above results, which rely essentially on equations (2), (3) and (5), together with

$$
a-\beta=\sqrt{p}, \quad a+\beta=1 \quad \text { and } \quad a \beta=-\left(\frac{p-1}{4}\right)
$$

are fairly straightforward and left to the reader. Of course, results such as these are not new. For example, (ii) was proved in a slightly more general form by E. Lucas as early as 1876 (see [1] page 396).

Finally, turning to the vertical sequences in the table given earlier, it follows from (v) that the sequence under $G_{n}(n \geqslant 1)$ is given by

$$
\begin{equation*}
\left\{\sum_{r=0}^{n-1}\binom{n-1-r}{r}(k-1)^{r}\right\} \quad(k \geqslant 1) \tag{6}
\end{equation*}
$$

so that for example the sequences under G_{4} and G_{5} are $\{2 k-1\}$ and $\left\{k^{2}+k-1\right\}$, respectively. Alternatively, instead of using (6), we can apply the Binomial Theorem to (2) and obtain the general vertical sequence in the form

$$
\left\{\frac{1}{2^{n-1}} \sum_{\substack{r=1 \\ r \text { odd }}}^{n}\binom{n}{r}(4 k-3)^{(r-1) / 2}\right\} \quad(k \geqslant 1)
$$

REFERENCE

1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Carnegie Institution (Washington 1919).
