RESIDUES OF GENERALIZED FIBONACCI SEQUENCES

C. C. YALAVIGI

Government College, Mercara, India

Consider a sequence of GF numbers, $\{w_n(b,c; P, Q)\}_{-\infty}^{\infty}$. For b = c = 1, L. Taylor [1] has proved the following theorem.

Theorem. The only sequences which possess the property that upon division by a (non-zero) member of that sequence, the members of the sequence leave least +ve, or -ve residues which are either zero or equal in absolute value to a member of the original sequence are the Fibonacci and Lucas sequences.

Our objective is to consider the extension of this theorem to GF sequences by a different approach, and show that a class of sequences can be constructed to satisfy the property of this theorem in a restricted sense, i.e., for a particular member only. For convenience, $w_n(b, 1; 0, 1)$, $w_n(b, 1; 2, b)$, $w_n(b, 1; P, Q)$ shall be designated by u_n , v_n , H_n , respectively.

Let $H_{k+r} \equiv (-1)^{r-1} H_{k-r}$ (mod H_k). Assume without loss of generality, k to be +ve. We distinguish 2 cases: (A) $0 \le r \le k$, and (B) r > k.

(A) Evidently, the members leave least residues which are either zero or equal in absolute value to a member of the original sequence.

(B) Allow $|H_{-s+1}| \leq |H_k| \leq |H_{-s}|$. Let

(1)
$$H_{2k+s} \equiv (-1)^{k+s-7} H_{-s} \pmod{H_k}, H_{2k+s+1} \equiv (-1)^{k+s} H_{-s-1} \pmod{H_k}.$$

Clearly, the property of above-cited theorem holds for $\{H_n\}_{-\infty}^{\infty}$, iff

$$(-1)^{k+s-1}H_{-s} \equiv H_{\mathfrak{L}} \pmod{H_k}$$
, and $(-1)^{k+s}H_{-s-1} \equiv H_{\mathfrak{L}+1} \pmod{H_k}$

for some \mathfrak{L} such that $-s + 1 \leq \mathfrak{L} \leq 2k$. Denote the period of $\{H_n \pmod{H_k}\}_0^\infty$ by $k(H_k)$. Rewrite the given sequence as $\{H'_n\}_{-\infty}^\infty$, where $H'_n = H_n$. Set k' = k + t, s' = s - t, and $\mathfrak{L}' = \mathfrak{L} + t$. Then, it is easy to show that

$$k(H_k) = 2k + s - \mathfrak{L}, \quad k(H'_{k'}) = 2k' + s' - \mathfrak{L}', \text{ and } \quad k(H_k) = k(H'_{k'}).$$

We assert that $k(H'_{K'})$ is even, for $t = (s - \mathfrak{Q})/2$ obtains $s' = \mathfrak{Q}'$, $k(H'_{K'}) = 2k'$, and the substitution of $s - \mathfrak{Q} = 2t + 1$ leads to $s' - \mathfrak{Q}' = 1$, $k(H'_{K'}) = 2k' + 1$, which is a contradiction. Hence, it is sufficient to examine the following system of congruences, viz.,

(2)
$$H'_{2k'} \equiv H'_0 \pmod{H'_{k'}}, \qquad H'_{2k+1} \equiv H'_1 \pmod{H'_{k'}}.$$

These congruences imply

(3)
$$H_{2k+t} \equiv H_t \equiv (-1)^{k+t-1} H_{-t} \pmod{H_k} \equiv (-1)^{k-1} \{ H_t - (2a - bP)u_t \} \pmod{H_k} \\ \equiv (-1)^{k-1} \{ P_{v_t} - H_t \} \pmod{H_k} .$$

Therefore, (i) P = 0, Q = 1, and (ii) P = 2, Q = b, furnish readily the desired sequences, and they are the only sequences for which the property of L. Taylor's theorem holds. For the restricted case, by using the well known formula $H_n = Pu_{n-1} + Qu_n$, it is possible to express $H_{-s} \equiv H_Q \pmod{H_k}$, and $H_{-s-1} \equiv H_{Q+1} \pmod{H_k}$ as two simultaneous equations in P, Q, and obtain their solution for given \hat{s} , \hat{s} , and k. In particular, the latter case may be handled by using $k(H'_{k'}) = k(u_{k'})$, where $H'_{k'}$ is selected arbitrarily to satisfy $k' = k(u_{k'})/2$ and $H'_{k'} = Pu_{k'-1} + Qu_k$,

determines P and Q.

Example:
$$H'_{g} = 19$$
, $k(H'_{g}) = 18$, $P = 9$, $Q = -5$.

FEB. 1977

REFERENCES

- 1. L. Taylor, "Residues of Fibonacci-Like Sequences," The Fibonacci Quarterly, Vol. 5, No. 3 (Oct. 1967), pp. 298-304.
- 2. C. C. Yalavigi, "On a Theorem of L. Taylor," Math. Edn., 4 (1970), p. 105.

COMPOSITES AND PRIMES AMONG POWERS OF FIBONACCI NUMBERS, INCREASED OR DECREASED BY ONE

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON San Jose State University, San Jose, California 95192

It is well known that, among the Fibonacci numbers F_n , given by

$$F_1 = 1 = F_2, \qquad F_{n+1} = F_n + F_{n-1},$$

 $F_n + 1$ is composite for each $n \ge 4$, while $F_n - 1$ is composite for $n \ge 7$. It is easily shown that $F_n^2 \pm 1$ is also composite for any n, since

$$F_n^2 \pm 1 = F_{n-2}F_{n+2}, \qquad F_n^2 \mp 1 = F_{n+1}F_{n-1}.$$

Here, we raise the question of when $F_k^m \pm 1$ is composite. First, if $k \neq 0 \pmod{3}$, then F_k is odd, F_k^m is odd, and $F_k^m \pm 1$ is even and hence composite. Now, suppose we deal with $F_{3k}^m \pm 1$. Since $A^n - B^n$ always has (A - B) as a factor, we see that $F_{3k}^m - 1^m$ is composite except when (A - B) = 1; that is, for k = 1. Thus,

Theorem 1. $F_k^m - 1$ is composite, $k \neq 3$.

We return to $F_{3k}^m + 1$. For *m* odd, then $A^m + B^m$ is known to have the factor (A + B), so that $F_{3k}^m + 1^m$ has the factor $(F_{3k} + 1)$, and hence is composite. If *m* is even, every even *m* except powers of 2 can be written in the form $(2j + 1)2^{i} = m$, so that

$$F_{3k}^{m} + 1^{m} = (F_{3k}^{2'})^{2j+1} + (1^{2'})^{2j+1}$$

which, from the known factors of $A^m + B^m$, m odd, must have $(F_{3k}^{2'} + 1)$ as a factor, and hence, $F_{3k}^m + 1$ is composite.

This leaves only the case $F_{3k}^m + 1$, where $m = 2^i$. When k = 1, we have the Fermat primes $2^{2^i} + 1$, prime for i = 0, 1, 2, 3, 4 but composite for i = 5, 6. It is an unsolved problem whether or not $2^{2^i} + 1$ has other prime values. We note in passing that, when k = 2, $F_6 = 8 = 2^3$, and $8^m \pm 1 = (2^3)^m \pm 1 = (2^m)^3 \pm 1$ is always composite, since $A^3 \pm B^3$ is always factorable. It is thought that $F_9^4 + 1$ is a prime. Since $F_{3k} = 0 \pmod{10}$, $k \equiv 0 \pmod{5}$, $F_{15k}^{2^i} + 1 = 10^{2^i} \cdot t + 1$.

Since $F_{3k}^{2i} \equiv 6 \pmod{10}$, $i \ge 2$, $k \ne 0 \pmod{5}$, $F_{3k}^{2i} + 1$ has the form 10t + 7, $k \ne 0 \pmod{5}$. We can summarize these remarks as

Theorem 2. F_k^m + 1 is composite, $k \neq 3s$, F_{3k}^m + 1 is composite, $m \neq 2^i$.

It is worthwhile to note the actual factors in at least one case. Since

$$F_{k+2}F_{k-2} - F_k^2 = (-1)^{k+1}$$

$$F_{k+1}F_{k-1} - F_k^2 = (-1)^k$$

moving F_k^2 to the right-hand side and then multiplying yields

 $F_{k-2}F_{k-1}F_{k+1}F_{k+2} = F_k^4 - 1.$

We now note that

$$F_k^5 - F_k = F_{k-2}F_{k-1}F_kF_{k+1}F_{k+2}$$

which causes one to ask if this is divisible by 5!. The answer is yes, if $k \neq 3 \pmod{6}$, but if $k \equiv 3 \pmod{6}$, then only 30 can be guaranteed as a divisor.
