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If {Fn};’z, is the sequence of Fibonacci numbers defined recursively by
Fr=1Fa=1 Fp=Fnpq+Fna, n=>3
then L7 (x), the generating function for the sequence {Fn}:=7 , is given by

(1) Ciix) = (1—x—x2)7 = Z F,-+7xi .
=0
Letting C;,(x) be the generating function for the Cauchy convolution product of £7(x) with itself n times
and Fl.f['/ be the coefficient of x/ in the n ¥ convolution, we have

=

{2) e = (1-x—x2y" = > F,-(f;x", n =1
=0

In a personal communigue, V.E. Hoggatt, Jr., pointed out that he and Marjorie Bicknell have sh own that

(r)
@) ,lim F’;"/ =
— o r
Fn
and
{r)
(4) lim _717_.77 =0,
- +
_ Fﬂr
where a = (1 ++/5)/2.
An immediate consequence of (3} is
i
(5) im Atk gkem
m— e F(r}
n+m
while by using (4), we obtain
F(Cu)k
. n B
(6) Slim i1 =0
n+tm

The purpose of this note is to extend the results of {3) and (4) to the columns of the eonvolution array form-
ed by a sequence of generalized Fibonacci numbers as well as to the array generated by the numerator poly-
nomials of the generating functions for the row sequences associated with the convolution array formed by the
given sequence of generalized Fibonacci numbers.

The sequence{Hn},‘T:, of generalized Fibonacci numbers defined recursively by

Hy=1, Ha=PFP Hp=Hpq+Hpo n>3
has generating function £7(x/given by
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(7) Cyi) = X Hypgx' = LHEZIM_ 57 P 1)F e
i=0 T—-x—x i=0

Usmg C*{x} for the Cauchy convolution product of £%(x) with itself n times and H,(f; for the coefficient of
x"inthe nt convolutlon we have

n b n ..
(8) Crix) = 2 Hinli - (7+(P—%x> =X F R () P- 1K
j T-x-x i=0 j=0
g )\ .i
-3 (E( )(P— 7)fF,_’j+,> x".
=0 j=0
Hence,
;
©) Hi = X (7) P-1F,
/=0
Using (5) together with the fact that ( ) =0forj > n, we have
H) / () pln) _ < it
. i . Je(n n n _ /., N-/
il@m n) i'Tm ,( )(P 1) F_/+,/F,_,, Z (j)lp a
Ficn =0 =0
! i o) ) Hr!
— H n i n n) _ H 1
=a lim_ Z (7)P—1VES/FL = a lim )
j=0 Fi—n
so that .
Hn!
(10) lim - g
i o oo H(,,)
and i
Hm)
(1) lim | =7 = o,
Hifm
By (6) and an argument similar to that used in the derivation of (10), we have
M
M i
F/—n
while
H(n+1} n+1 )
.|' - n+1 I n=j
im - i > (")) P-1a"T 0
j=0
so0 that
(n)
H
(12) Jim —L_ =90
[— oo H{n+7}
1
and
il
(13) lim i =0.
I'—>e y(n+1)
Hitm

Let Rf,,(x) be the generating function for the sequence of elements in the n % row of the convolution array
formed by the powers of £ f(x). Then
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(14) | Ri(x) = 2, H,si+7)xi.
=0
in [1], itis shown that
(15) Ritx) = (1-x/)7"
(16) R3(x) = P(1—x)72
and
(17 Rilx) = {1+(P— 7})()/V;,‘_7(X)+(Z—X}/V,’;_z(x) _ Nxix)
(1—x)"7 (1—x)"
where N {x) is a polynomial of degree n — 2 forn > 2.

Let G (x) be the generating function for the nt

coefficients of the /% (x) polynomials. In [1], it is shown that

(18) Gilx) = C3%ix)

(19) G3(x) = DColx)

and ,

(20) Giix) = LE=1=X gx () n >3,
(1-x—x°)

whereD=P2 _p_ 1. By induction, it can be shown that

n-2
(21) Grpx) = P=1=xZ 0y s g
(1-x—-x%)
which by an argument similar to that of (8) yields
o i
(22) Git) =0 L (X -1 ("7 2) - 12l
=0 j=0
If we let g,-(f; be the coefficient of x/ in G} (x) then we see that
{23) g,-g; = F,'+7+(P—' 7)F,'
2) _ (2)
(24) Giry = DFF
and
i .
(25) =0 -1 (772 (P 1R, s s,
j=0
Following arguments similar to those given in obtaining {10} through {13), we have
(n)
(26) jlim,, L =
9
(n)
. Ji+k  _  _k-m
(27) i[me —(;’7— =a
itm
{n)
. gi B
(28) e o =0
9i

and

v
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column of the left-adjusted triangular array formed by the
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SUMMATION OF MULTIPARAMETER HARMONIC SERIES

B. J. CERIMELE
Lilly Research L aboratories, Indianapolis, indiana 46206

1. INTRODUCTION

Consider the multiparameter alternating harmonic series denoted and defined by

(1) W kg, =, kn) = 25 (=1)/j+si),
=0
where / and the &; are positive integers, sp =0, s, = S, and
i,mod n
si= IS+ 3 ke
=1

Note that the parameters k4, -, k, are successive cyclic denominator increments. In the ensuing treatment
summation formulas for such series, to be called c-series, are developed which admit evaluation in terms of
elementary functions. An example is included to illustrate the formulas.

2. SUMMATION FORMULAS
The expression of the summation formulas for the o -series (1) is based upon the following two lemmas,

Lemma 1.

i

7 -
@ wlipk) = (56017 =[x axh1+x%)

0
(= 1) e /kdin(1 +x)

q-7 7
—(2/k) 3~ [Pilx) cos ((2i + T)im/k) — Q; (x) sin ((2i + 1)jm/k)] 0
=0

[Continued on page 144.]



