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The! Fibonacci convolution sequences \Fn \ which arise from convolutions of the Fibonacci sequence 
{ 1 , 1, 2, 3, 5, 8, —, Fn, •••} lead to some new Fibonacci identities, limit theorems, and determinant identities. 

1. THE FIBONACCI CONVOLUTION SEQUENCES 

Let the rth Fibonacci convolution sequence be denoted \F(
n
r'\; note that F„ = Fn, the nth Fibonacci 

number. Then 

(1-D F(„V = £ Fn-ih 
i=0 

(1-2) F<„'> - £ FWFi , 
1=0 

However, there are some easier methods of calculation. 
Let the Fibonacci polynomials Fn(x) be defined by 

(1.3) Fn+2(x) = xFn+1(x) + Fn(x), Fo(x)~0, F7(x) = 1 . 

Then, since Fn(1)= Fn, the recursion relation for the Fibonacci numbers, Fn+2= Fn+i + Fn, follows immedi-
ately by taking x = I In a similar manner we may write recursion relations for {Fff^} . 

From (1.3), taking the first derivative we have 

F'n+2(x) = xF'n+1(x) + F'n(x) + Fn+1(xl 

Since F'n(1) = Fn , takingx = 1 gives us the recursion relation for \Fn j , 

(1.4) Fn+2 ~ Fn+1 + Fn +hn+1 . 

Since the generating function for the Fibonacci polynomials is 

(1.5) ^ - - = D FnMYn. 
1-xY-Y2

 n=i 

while the generating function for the Fibonacci convolution sequences is 

(r)xn (1-6) ( Z-fY' = i ^ 
\ l - x - x 2 j n=l 

it is easy to see that 

(1.7) F(
n

r} = F(
n

r)(l)/r! , 

where F„(x) is the rth derivative of the Fibonacci polynomial Fn(x). Thus we can write 
/ i o\ F(r+1) _ F(r+1) , F(r+1) F(r) 
(1.8) hn+2 ~ hn+1 +hn +rn+1 , 
which enables us to make the following table with a minimum of effort 

We can extend our sequences for negative subscripts to write 
(1.9) F[rJ= (-Vn+1F(

n
r), 

-n 
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n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

1 

] 

2 

3 

5 

8 

13 

21 

34 

55 

F(1) 
' n 

0 

0 
1 

2 

5 

10 

20 

38 

71 

130 

235 

0 

0 

0 

1 

3 
9 

22 

51 

111 

233 

474 

F(3) rn 

0 

0 

0 

0 

1 

| 4 

14 

105 

256 

594 

F(4) rn 

0 

0 

0 

0 

0 

1 

5 

20 

65 

190 

511 

where we note that j f ^ j has 2r+ 1 zeros, and FJ+j = /, F^2
 = r. 

Equation (1.9) can be established for r = 1 quite easily by induction. Assume that (1.9) holds for 1, 2, 3, • 
r, and f o r r + 7 for /7- 1, 2, - , k. Then by (1.8) 

Fi^P = F l ^ ^ F l ^ U F ^ = (-1)k+1 F[rk
+1> H-1)kF[£] + (-l)k+1 F(J> 

(-1) 
k+2rr(r+ll r(r+1) _ r(r)j xk+2t lr.k+1 - F.k - h_kJ - (-JJ r.k_1 

which is equivalent to (1.9) for/7 = k + 1, finishing a proof by induction. 
Returning to (1.6), recall that the recurrence relationjor {F'n

1') has auxjhary polynomial (x2 - x - 1) , 
whose roots are, of course, a, a, j3, 0, where a = (1 +sJb)/2 and /3= (1 - s/b )/2. Then, 

(1.10) F(
n

1) = (A+Bn)an + (C + Dn)$n 

for some constants A, B, C and D due to the repeated roots. Since the Fibonacci numbers are a linear combina-
tion of the same roots, 

(1.11) F(
n

1} = (A* + B*n)Fn+1 + (C* + D*n)Fn„7 

for some constants /4* B*f C*, and D*. By letting n = 0, 1, 2, 3 and solving the resulting system of equations, 
one f i n d s , 4 * ^ - / A B* = C*= D*= 1/5, resulting in 

(1.12) 
which leads easily to 

(1.13) 

5Ft 
(1) (n- 1)Fn+1 + (n + 1)Fn,1t 

z<1) 

Jh 

(nLn-Fn)/5 

where Ln is the nL" Lucas number. 
Returning again to the auxiliary polynomial f o r j / 7 ^ } , since (x2 - x - 1) = x - 2x3 - x2 +2x + 1, we 

can write 
H U ) p(l) -9F(D +F(D 9F(D F(1) 

2. SPECIAL LIMITING RATIOS 
It is well known that 

(2.1) lim FJ£1 = 1+^5 

We extend this property of the Fibonacci numbers to the Fibonacci convolution sequences. First, (1.10) gives us 
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F(
n

1) = (A+Bn)an + (C + Dn)$n 

for some constants A, B, C and D. Thus one concludes 

Mm FJlL = lim [A + B(n + 1)]a+[C + Ofn + 1)1 BJ(B/a)n
 = a 

n^oo F(,} n->~ A+Bn + (C + Dn)($/a)n 

Clearly, this holds for any { ^ } since, by examining the auxiliary polynomial, 

(2.2) F(
n

r} = pr(n)an+qr(n)$n, 

wherepr(n) and qr(n) are polynomials in n of degree r. Then, we have 

,,3, > l h . ?1L •. „,._ ,**t*".,A*u£: . m ,j^» a __ a 

While it is not necessary to be able to writepr(n) and qr(n) to establish (2.3), it would be interesting to find a 
recurrence for these polynomials. 

It is not difficult to show that 

(2.4) J i m 

and that 
"-*<*> F(D 

n 

F(rV 
(2.5) lim -£— = o r* < r . 

n -> °° r (r) 
rn 

We also find a as a value for a special limiting ratio. We define 

(2.6) W<# -FlfijFtt-fFPl2. 
For r = Ot the Fibonacci numbers themselves, W„ = (-1)n, but when r > 1, W„ is not a constant. However, 
we have the surprising limiting ratio, 

yy(r) 
(2.7) lim -J2±L = a2, r > I 

To establish (2.7), we use (2.2) to calculate W(
n

r} as 

W{n] = [pr(n + Dan+1 +qr(n + 1)$n+1][pr(n - 1)an~1 +qr(n - 1)Pn'1] - [pr(n)an+qr(n)$n]2 

= fpr(n + Dpr(n - Va2n +qr(n + 1)qr(n - 1)fn + pr(n + 1)qr(n - 1)an+1$n~1 

+ pr(n - Vqr(n + 1)an'1pn+1] - [p2(n)a2n +2pr(n)qr(n)an(3n +q?(n)fn] 

= [pr(n + Vpr(n - V - p2(n)] a2n + fqr(n + l)qr(n -1)- q?(n)]p2n + Rr(n), 

where Rr(n) is a polynomial in/7 of degree 2r, but each term contains a factor of a5 or|3f, where 5, fare at most 
two, since a(3=-1. Then, if prfn + 1)pr(n - 1)-p2(n) ? ft we find that 

,/l/fr) F(r) F(r) fF(r) j2 

n^oo ^(rj (r) (r) (r} 2 

Please note that for the Fibonacci numbers themselves, it is indeed true that/? = -q = 1/(a- P) and 

p(n + l)p(n- 1)-p2(n) = 0. 

That there are no other polynomials such thatp(n + 1)p(n - 1) ~ p (n) = 0 is proved by considering 

F(
n

r} = pr(n)an + qr(n)p>n, 

wherepr(n) is a polynomial of degree at most r. Consider 
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Pin) = pr(n + l)pr(n - 1)-pf(n) 

which is a polynomia! of degree at mostiV. Thus, P(n) £ 0 for more than 2r values of n. Clearly, then, for all 
large enough n, P(n)^ 0. 

3. DETERMINANT IDENTITIES FOR THE FIBONACCI CONVOLUTION SEQUENCES 

Several interesting determinant identities can be found for the Fibonacci convolution sequences. First, we ex-
amine a class of unit determinants. Let 

z(D r(D r(D r(l) 

(3.1) 

n+3 rn+2 

rd) F(1) 
n+2 rn+1 

' n+1 

-d) 

AD 
rn+1 
cd) 

rd) rd) 
n 

rd) 

Fd) 

pd) 
rn-1 hn-2 
r(D r(D 
hn-2 hn-3 

Then it is easily proved that Dn = 1 by using (1.14), since replacing the fourth column with a linear combina-
tion of the present columns gives us the negative of the first column of Dn+j. That is, since 

-F, (1) = 
n+4 

- Ofd) rd) +?rd) ,rd) 
~ "Ztn+3 ~ tn+2+ Zt n+1 + hn 

r(D 
^n+3 

rd) 
hn+2 

r(D r(D 
^n+2 tn+1 
r(l) rd) 

^n+1 tn 

cd) 

rd) 
n+1 

rd) 

n 

n-1 r(D r(D 
•n-1 tn-2 

-F, 

-F, 

r(D 

n+4 

n+3 
n+2 
(1) 
n+1 

so that Dn = Dn+i after making appropriate column exchanges. Lastly, since Df = 1, Dn= 1 for all n. 

Now, let D^ be the determinant of order (2r + 2) with successive members of the sequence [FJj } written 
-M along its rows and columns in decreasing order such that Fn appears everywhere along the minor diagonal. 

Since \Fn j has an auxiliary polynomial of degree (2r + 2), F^rJ2r+2 's a ' m e a r combination of 
-(r) 
n+2r+t> 

-(r) 
rn+2r> 

-(r) 
rn+2r-1 > 

-(r) 
n+U 

-Jr) 
n 

so that D*n
r' = iDn+j after (2r + 1) appropriate column exchanges. The auxiliary polynomial (x - x - 1)l+ 

has a positive constant term when r is odd, making the last column the negative of the first column of D^lp 

so that 
D (r) (-„2r+1(_m(r)i = DMif r o d d ; 

(r) but, for r even, a negative constant term makes the last column equal the first column of D^Jj, and 
D(r),(„7)2r+1DM1 = 1(r) Jn+1' r even. 

±r, and F^ = 7. We need only to evaluate tijf' for one value of n, then! Now, FJf' = 0 for/7 = 0, ±1, ±2, 
Thus, D'r+r = (-l)r+ since ones appear on the minor diagonal there with zeroes everywhere below. Then, 
D„ = 1 when r is odd, and DJ[' = (-1)n when r is even, which can be combined to 

(3.2) Off* = (~1)n(r+1). 

The special case r = 0 is the well known formula, Fn+jFn-] - F„ = (-l)n . 
A second proof of (3.2) is instructive. Returning to (3.1), apply (1.8) as 

(3.3) z(r) :(r+1) -F, (r+1) _ F(r+1) 
• n ' n+1 rn+2 rn+1 ' n 

taking r = 0. Subtracting pairs of columns and then pairs of rows gives 
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Fn+2 Fn+1 F% Pi11 

Fn+1 F, '<" <=(1) 

rn-1 

n 

Fn-1 

Fn-2 

zd) 
rn-1 

rn-1 rn-2 

hn-2 hn-3 

0 
0 

-/ 

0 Fn 

0 Fn-j 

F 1 F(1} 
rn-1 rn_1 

j n-2 J-n-2 

Fn-1 

Fn-2 

F(1) tn-2 
F(1) hn-3 

Thus, 
Dn (FnFn-2-F^f = 1. 

Notice that this proof can be generalized, and after sufficient subtractions, one always makes a block of zeroes 
in the upper left, with two smaller determinants of the same form in the lower left and upper right, so that D^ 
is always a product of smaller known determinants off**, r* < r, making a proof by induction possible. Each 
higher order determinant requires more subtractions of pairs of rows and columns, but careful counting of sub-
scripts leads one to 

(3.4) D (r) _ [D(
rt

r^].[D(
n

(r'2)/2}]f r e v e n ; 

ID ((r-1)/2)i2 lz, r odd; 
which again gives us (3.2). 

The process of subtraction of pairs of columns and rows can also be applied to determinants of odd order. 
For example, 

F(1) hn+2 rn+1 rn 

:(1) p(1) r(1) 
n+1 rn-1 

F(1) c(D 
n-1 tn-2 

0 

Fn 

Fn-1 

Fn 

W 
C'l 

Fn-1 

p(1) 
rn-1 

p(1) hn-2 

Then, by applying (1.13) and known Fibonacci and Lucas identities, one can evaluate D*. The algebra, how-
ever, is long and inelegant. One obtains, after patience, 

(3.5) D* = (-l)n+1F(
n

1} . 

However, Dp, can also be written out from the form given above on the right, so that 
n* _ / jin + 1 nil) _ np r r(D pUJpH) p2p(D 
Un - {-l> hn ~ ^hnFn-irn.1- hn,1hn -FnFn_J 

f(_1\n~1 + F2 ]F(l)=pFF ,rF(l} - F(1) - F iJ-F2F(1) 
ll-U +rn_1Jf-n -Ztntn.1[tn ~ rn_2- t-n-lJ ~ rnhn_2 

[(Fn-1Fn-F
2

n_1) + F2
n_1-2FnFn-1]F<n

1) = (-2FnFn.7 - F2
n)F

(
nl

}
2- 2FnF

2_1 

-FnLn-2Fn 
(1) 

~Fn^nFn-2 ~ 2Fn Fn_ -j 

by applying known Fibonacci identities. Finally, dividing by -Fn, n =/= 0 and rearranging, we have 

:(D (1) (3.6) Ln-2Fn"-LnFnL'2 = 2Fnt1. 

which we compare with the known 

Ln-2Fn-LnFn-2 = 2(-1)n. 

l fwelet/7* ' denote the determinant of order (2r+ 1) which has successive members of the sequence [Fn } 
written along its rows and columns in decreasing order such that { / ^ j appears everywhere along the minor 
diagonal, we-conjecture that 

(3.7) Df} = (-l)r(n+1)F(
n

r) . 

Equation (3.7) has been proved for r = 1 above, and r= 0 is trivial. When r= 2, it is possible to prove (3.7) by 
using the identity 



122 FIBONACCI CONVOLUTION SEQUENCES [APR. 1977] 

(3.8) F(
n

2) = [(5n2-2)Fn-3nLn]/50 

as well as (1.13). The algebra, however, is horrendous. The identity (3.8) can be derived by solving for the con-
stants/!, B, C, D,E, and f i n 

:(2) (A+Bn + Cn2)Fn + (D + En + Fn2)Ln 

which arises since \F{2'\ has auxiliary polynomial (x2 - x - 1)3, whose roots are a, a, a and /3, 0, 0. 
Two other determinant identities follow without proof. 

= <-1)n[F<n
1J5 + 2Fn-4l 

p(1) 
tn+2 
p(1) rn+1 

p(1) 

p(1) hn+2 

p(1) 

p(1) 

pin 

p(1) rn 

rn 

hn-1 

ril) 
hn-2 

F(1) hn-1 

c(1) hn-2 

hn-3 

rU) 

hn-2 

r(D 
hn-3 

= (-Dn[F(
n
1J2-Fn„2] 

TWO RECURSION RELATIONS FOR F(F(n)) 

EDWARD A.PARBERRY 
Well's College, Aurora, New York 13026 

Some time ago, in [1 ] , the question of the existence of a recursion relation for the sequence of Fibonacci 
numbers with Fibonacci numbers for subscripts was raised. In the present article we give a 6 order non-linear 
recursion for fin) ~ F(F(n)). 

Proposition. Let fin) - F(F(n))f where Fin) is the nth Fibonacci number, then 

fin) - iSfin - 2)2+(-1)F(n+1))f(n - 3)+i-1)F(n)(f(n -3)- i-1)F(n+1)f(n - 6))f(n - 2)/f(n - 5). 

Remark. Identity (1) below is given in [2 ] , and identity (2) is proved similarly. Note also tha t#=£ (mod 
3) implies that 

(-J)F(a) = (_i)F(b) a {_j)Ua) = (_f)Ub)^ 

which is used frequently. 
(1) F(a + b) - F(a)L(b)-(-1)bF(a-b) 

(2) 5F(a)F(h) = Lia + b)-(- 1)aL (b-a). 

Proof of Proposition. In (1), let a - F(n - 2), b = F(n - 1) to obtain 

fin) = f(n-2)L(F(n- V)- (-DF(n'1)F(-F(n - 3)) 

- fin - 2)L(F(n - D) - (- 1)F(n " u(- VF(n~3)+1f(n - 3) 

- fin - 2)L (Fin - D) + (-1)F(n+ 1}f(n - 3). 

[Continued on page 139.] 


