FIBONACCI CONVOLUTION SEQUENCES

V. E. HOGGATT, JR., and MARJORIE BICKNELL-JOHNSON San Jose State University, San Jose, California 95129

The Fibonacci convolution sequences $\{F_n^{(r)}\}$ which arise from convolutions of the Fibonacci sequence $\{1, 1, 2, 3, 5, 8, \cdots, F_n, \cdots\}$ lead to some new Fibonacci identities, limit theorems, and determinant identities.

1. THE FIBONACCI CONVOLUTION SEQUENCES

Let the r^{th} Fibonacci convolution sequence be denoted $\{F_n^{(r)}\}$; note that $F_n^{(0)} = F_n$, the n^{th} Fibonacci number. Then

(1.1)
$$F_n^{(1)} = \sum_{j=0}^n F_{n-j} F_j$$

(1.2)
$$F_n^{(r)} = \sum_{i=0}^n F_{n-i}^{(r-1)} F_i ,$$

However, there are some easier methods of calculation.

Let the Fibonacci polynomials $F_n(x)$ be defined by

(1.3)
$$F_{n+2}(x) = xF_{n+1}(x) + F_n(x), \qquad F_0(x) = 0, \quad F_1(x) = 1.$$

Then, since $F_n(1) = F_n$, the recursion relation for the Fibonacci numbers, $F_{n+2} = F_{n+1} + F_n$, follows immediately by taking x = 1. In a similar manner we may write recursion relations for $\{F_n^{(r)}\}$.

From (1.3), taking the first derivative we have

$$F'_{n+2}(x) = xF'_{n+1}(x) + F'_n(x) + F_{n+1}(x).$$

Since $F'_n(1) = F_n^{(1)}$, taking x = 1 gives us the recursion relation for $\{F_n^{(1)}\}$,

(1.4)
$$F_{n+2}^{(1)} = F_{n+1}^{(1)} + F_n^{(1)} + F_{n+1}.$$

Since the generating function for the Fibonacci polynomials is

(1.5)
$$\frac{Y}{1 - xY - Y^2} = \sum_{n=1}^{\infty} F_n(x)Y^n,$$

while the generating function for the Fibonacci convolution sequences is

(1.6)
$$\left(\frac{x}{1-x-x^2}\right)^{r+1} = \sum_{n=1}^{\infty} F_n^{(r)} x^n ,$$

it is easy to see that

(1.7)
$$F_n^{(r)} = F_n^{(r)}(1)/r! ,$$

where $F_n^{(r)}(x)$ is the r^{th} derivative of the Fibonacci polynomial $F_n(x)$. Thus we can write

(1.8)
$$F_{n+2}^{(r+1)} = F_{n+1}^{(r+1)} + F_n^{(r+1)} + F_{n+1}^{(r)}$$

which enables us to make the following table with a minimum of effort.

We can extend our sequences for negative subscripts to write

(1.9)
$$F_{-n}^{(r)} = (-1)^{n+1} F_n^{(r)},$$

n	F_n	$F_n^{(1)}$	$F_n^{(2)}$	$F_n^{(3)}$	$F_n^{(4)}$	•••
0	0	0	0	0	0	
1	1	0	0	0	0	
2	1	1	0	0	0	
3	2	2	1	0	0	
4	3	5	3	1	0	
5	5	10	9	4	1	
6	8	20	22	14	5	
7	13	38	51	40	20	
8	21	71	111	105	65	
9	34	130	233	256	190	
10	55	235	474	594	511	•••
•••			•••	•••	•••	•••

where we note that $\{F_n^{(r)}\}$ has 2r+1 zeros, and $F_{r+1}^{(r)}=1$, $F_{r+2}^{(r)}=r$. Equation (1.9) can be established for r=1 quite easily by induction. Assume that (1.9) holds for 1, 2, 3, ..., r, and for r + 1 for $n = 1, 2, \dots, k$. Then by (1.8)

$$F_{k+1}^{(r+1)} = F_k^{(r+1)} + F_{k-1}^{(r+1)} + F_k^{(r)} = (-1)^{k+1} F_{-k}^{(r+1)} + (-1)^k F_{-k+1}^{(r+1)} + (-1)^{k+1} F_{-k}^{(r)}$$
$$= (-1)^{k+2} [F_{-k+1}^{(r+1)} - F_{-k}^{(r+1)} - F_{-k}^{(r)}] = (-1)^{k+2} F_{-k-1},$$

which is equivalent to (1.9) for n=k+1, finishing a proof by induction. Returning to (1.6), recall that the recurrence relation for $\left\{F_n^{(1)}\right\}$ has auxiliary polynomial $(x^2-x-1)^2$, whose roots are, of course, a, a, β , β , where $a=(1+\sqrt{5})/2$ and $\beta=(1-\sqrt{5})/2$. Then,

(1.10)
$$F_n^{(1)} = (A + Bn)a^n + (C + Dn)\beta^n$$

for some constants A, B, C and D due to the repeated roots. Since the Fibonacci numbers are a linear combination of the same roots,

(1.11)
$$F_n^{(1)} = (A^* + B^*n)F_{n+1} + (C^* + D^*n)F_{n-1}$$

for some constants A^* , B^* , C^* , and D^* . By letting n = 0, 1, 2, 3 and solving the resulting system of equations, one finds $A^* = -1/5$, $B^* = C^* = D^* = 1/5$, resulting in

(1.12)
$$5F_n^{(1)} = (n-1)F_{n+1} + (n+1)F_{n-1},$$

which leads easily to

(1.13)
$$F_n^{(1)} = (nL_n - F_n)/5$$

where L_n is the n^{th} Lucas number.

Returning again to the auxiliary polynomial for $\{F_n^{(1)}\}$, since $(x^2-x-1)^2=x^4-2x^3-x^2+2x+1$, we can write

(1.14)
$$F_{n+4}^{(1)} = 2F_{n+3}^{(1)} + F_{n+2}^{(1)} - 2F_{n+1}^{(1)} - F_n^{(1)}$$

2. SPECIAL LIMITING BATIOS

It is well known that

(2.1)
$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = a = \frac{1 + \sqrt{5}}{2} .$$

We extend this property of the Fibonacci numbers to the Fibonacci convolution sequences. First, (1,10) gives us

$$F_n^{(1)} = (A + Bn)\alpha^n + (C + Dn)\beta^n$$

for some constants A, B, C and D. Thus one concludes

$$\lim_{n \to \infty} \frac{F_{n+1}^{(1)}}{F_n^{(1)}} = \lim_{n \to \infty} \frac{[A + B(n+1)] \, \alpha + [C + D(n+1)] \, \beta] \, (\beta/\alpha)^n}{A + Bn + (C + Dn) (\beta/\alpha)^n} = \alpha \ .$$

Clearly, this holds for any $\{F_n^{(r)}\}$ since, by examining the auxiliary polynomial,

(2.2)
$$F_n^{(r)} = p_r(n)\alpha^n + q_r(n)\beta^n,$$

where $p_r(n)$ and $q_r(n)$ are polynomials in n of degree r. Then, we have

(2.3)
$$\lim_{n \to \infty} \frac{F_{n+1}^{(r)}}{F_n^{(r)}} = \lim_{n \to \infty} \frac{p_r(n+1)\alpha^{n+1} + q_r(n+1)\beta^{n+1}}{p_r(n)\alpha^n + q_r(n)\beta^n} = \lim_{n \to \infty} \frac{p_r(n+1)}{p_r(n)} \ \alpha = \alpha.$$

While it is not necessary to be able to write $p_r(n)$ and $q_r(n)$ to establish (2.3), it would be interesting to find a recurrence for these polynomials.

It is not difficult to show that

$$\lim_{n \to \infty} \frac{F_n}{F_n^{(1)}} = 0$$

and that

(2.5)
$$\lim_{n \to \infty} \frac{F_n^{(r^*)}}{F_n^{(r)}} = 0, \quad r^* < r.$$

We also find a^2 as a value for a special limiting ratio. We define

(2.6)
$$W_n^{(r)} = F_{n+1}^{(r)} F_{n-1}^{(r)} - [F_n^{(r)}]^2.$$

For r = 0, the Fibonacci numbers themselves, $W_n^{(0)} = (-1)^n$, but when r > 1, $W_n^{(r)}$ is not a constant. However, we have the surprising limiting ratio,

(2.7)
$$\lim_{n \to \infty} \frac{W_{n+1}^{(r)}}{W_n^{(r)}} = \alpha^2, \quad r \geqslant 1.$$

To establish (2.7), we use (2.2) to calculate $W_n^{(r)}$ as

$$\begin{split} \mathcal{W}_{n}^{(r)} &= \left[p_{r}(n+1)\alpha^{n+1} + q_{r}(n+1)\beta^{n+1}\right] \left[p_{r}(n-1)\alpha^{n-1} + q_{r}(n-1)\beta^{n-1}\right] - \left[p_{r}(n)\alpha^{n} + q_{r}(n)\beta^{n}\right]^{2} \\ &= \left[p_{r}(n+1)p_{r}(n-1)\alpha^{2n} + q_{r}(n+1)q_{r}(n-1)\beta^{2n} + p_{r}(n+1)q_{r}(n-1)\alpha^{n+1}\beta^{n-1} \right. \\ &+ p_{r}(n-1)q_{r}(n+1)\alpha^{n-1}\beta^{n+1}\right] - \left[p_{r}^{2}(n)\alpha^{2n} + 2p_{r}(n)q_{r}(n)\alpha^{n}\beta^{n} + q_{r}^{2}(n)\beta^{2n}\right] \\ &= \left[p_{r}(n+1)p_{r}(n-1) - p_{r}^{2}(n)\right]\alpha^{2n} + \left[q_{r}(n+1)q_{r}(n-1) - q_{r}^{2}(n)\right]\beta^{2n} + R_{r}(n), \end{split}$$

where $R_r(n)$ is a polynomial in n of degree 2r, but each term contains a factor of a^s or β^t , where s, t are at most two, since $a\beta = -1$. Then, if $p_r(n+1)p_r(n-1) - p_r^2(n) \neq 0$, we find that

$$\lim_{n \to \infty} \ \frac{W_{n+1}^{(r)}}{W_n^{(r)}} = \frac{F_{n+2}^{(r)} F_n^{(r)} - [F_{n+1}^{(r)}]^2}{F_{n+1}^{(r)} F_{n-1}^{(r)} - [F_n^{(r)}]^2} = \alpha^2 \ .$$

Please note that for the Fibonacci numbers themselves, it is indeed true that $p = -q = 1/(\alpha - \beta)$ and

$$p(n + 1)p(n - 1) - p^{2}(n) \equiv 0.$$

That there are no other polynomials such that $p(n + 1)p(n - 1) - p^2(n) \equiv 0$ is proved by considering

$$F_n^{(r)} = p_r(n)\alpha^n + q_r(n)\beta^n ,$$

where $p_r(n)$ is a polynomial of degree at most r. Consider

$$P(n) = p_r(n+1)p_r(n-1) - p_r^2(n)$$

which is a polynomial of degree at most 2r. Thus, $P(n) \neq 0$ for more than 2r values of n. Clearly, then, for all large enough n, $P(n) \neq 0$.

3. DETERMINANT IDENTITIES FOR THE FIBONACCI CONVOLUTION SEQUENCES

Several interesting determinant identities can be found for the Fibonacci convolution sequences. First, we examine a class of unit determinants, Let

(3.1)
$$D_{n} = \begin{vmatrix} F_{n+3}^{(1)} & F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} \\ F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} \\ F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\ F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} & F_{n-3}^{(1)} \end{vmatrix}$$

Then it is easily proved that $D_n = 1$ by using (1.14), since replacing the fourth column with a linear combination of the present columns gives us the negative of the first column of D_{n+1} . That is, since

$$D_{n} = \begin{vmatrix} F_{n+4}^{(1)} & F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_$$

so that $D_n = D_{n+1}$ after making appropriate column exchanges. Lastly, since $D_1 = 1$, $D_n = 1$ for all n.

Now, let $D_n^{(r)}$ be the determinant of order (2r+2) with successive members of the sequence $\{F_n^{(r)}\}$ written along its rows and columns in decreasing order such that $F_n^{(r)}$ appears everywhere along the minor diagonal. Since $\{F_n^{(r)}\}$ has an auxiliary polynomial of degree (2r+2), $F_{n+2r+2}^{(r)}$ is a linear combination of $F_{n+2r+1}^{(r)}$, $F_{n+2r}^{(r)}$, $F_{n+2r-1}^{(r)}$, ..., $F_{n+1}^{(r)}$, $F_n^{(r)}$, so that $D_n^{(r)} = \pm D_{n+1}^{(r)}$ after (2r+1) appropriate column exchanges. The auxiliary polynomial $(x^2-x-1)^{r+1}$

$$F_{n+2r+1}^{(r)}, F_{n+2r}^{(r)}, F_{n+2r-1}^{(r)}, \dots, F_{n+1}^{(r)}, F_{n}^{(r)},$$

has a positive constant term when r is odd, making the last column the negative of the first column of $D_{n+1}^{(r)}$. so that

$$D_n^{(r)} = (-1)^{2r+1}(-1)D_{n+1}^{(r)} = D_{n+1}^{(r)}, r \text{ odd};$$

but, for r even, a negative constant term makes the last column equal the first column of $D_{n+1}^{(r)}$, and

$$D_n^{(r)} = (-1)^{2r+1}D_{n+1}^{(r)} = -D_{n+1}^{(r)}, r \text{ even.}$$

We need only to evaluate $D_n^{(r)}$ for one value of n, then. Now, $F_n^{(r)} = 0$ for $n = 0, \pm 1, \pm 2, \cdots, \pm r$, and $F_{r+1}^{(r)} = 1$. Thus, $D_{r+1}^{(r)} = (-1)^{r+1}$ since ones appear on the minor diagonal there with zeroes everywhere below. Then, $D_n^{(r)} = 1$ when r is odd, and $D_n^{(r)} = (-1)^n$ when r is even, which can be combined to

(3.2)
$$D_n^{(r)} = (-1)^{n(r+1)}.$$

The special case r=0 is the well known formula, $F_{n+1}F_{n-1}-F_n^2=(-1)^n$. A second proof of (3.2) is instructive. Returning to (3.1), apply (1.8) as

(3.3)
$$F_{n+1}^{(r)} = F_{n+2}^{(r+1)} - F_{n+1}^{(r+1)} - F_n^{(r+1)},$$

taking r = 0. Subtracting pairs of columns and then pairs of rows gives

$$D_{n} = \begin{vmatrix} F_{n+2} & F_{n+1} & F_{n+1}^{(1)} & F_{n}^{(1)} \\ F_{n+1} & F_{n} & F_{n}^{(1)} & F_{n-1}^{(1)} \\ F_{n} & F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\ F_{n-1} & F_{n-2} & F_{n-2}^{(1)} & F_{n-3}^{(1)} \end{vmatrix} = \begin{vmatrix} 0 & 0 & F_{n} & F_{n-1} \\ 0 & 0 & F_{n-1} & F_{n-2} \\ F_{n} & F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\ F_{n-1} & F_{n-2} & F_{n-2}^{(1)} & F_{n-3}^{(1)} \end{vmatrix}.$$

Thus,

$$D_n = (F_n F_{n-2} - F_{n-1}^2)^2 = 1.$$

Notice that this proof can be generalized, and after sufficient subtractions, one always makes a block of zeroes in the upper left, with two smaller determinants of the same form in the lower left and upper right, so that $D_n^{(r)}$ is always a product of smaller known determinants $D_n^{(r*)}$, $r^* < r$, making a proof by induction possible. Each higher order determinant requires more subtractions of pairs of rows and columns, but careful counting of subscripts leads one to

(3.4)
$$D_n^{(r)} = \begin{cases} [D_n^{(r/2)}] \cdot [D_n^{((r-2)/2)}], & r \text{ even }; \\ [D_n^{((r-1)/2)}]^2, & r \text{ odd }; \end{cases}$$

which again gives us (3.2).

The process of subtraction of pairs of columns and rows can also be applied to determinants of odd order. For example,

$$D_n^* = \begin{vmatrix} F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_n^{(1)} \\ F_{n+1}^{(1)} & F_n^{(1)} & F_{n-1}^{(1)} \\ F_n^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \end{vmatrix} = \begin{vmatrix} 0 & F_n & F_{n-1} \\ F_n & F_n^{(1)} & F_{n-1}^{(1)} \\ F_{n-1} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \end{vmatrix}.$$

Then, by applying (1.13) and known Fibonacci and Lucas identities, one can evaluate D_n^* . The algebra, however, is long and inelegant. One obtains, after patience,

$$D_n^* = (-1)^{n+1} F_n^{(1)}$$

However, D_n^* can also be written out from the form given above on the right, so that

$$D_{n}^{*} = (-1)^{n+1} F_{n}^{(1)} = 2F_{n} F_{n-1} F_{n-1}^{(1)} - F_{n-1}^{(2)} F_{n}^{(1)} - F_{n}^{2} F_{n-1}^{(1)}$$

$$[(-1)^{n-1} + F_{n-1}^{2}] F_{n}^{(1)} = 2F_{n} F_{n-1} [F_{n}^{(1)} - F_{n-2}^{(1)} - F_{n-1}] - F_{n}^{2} F_{n-2}^{(1)}$$

$$[(F_{n-1}F_{n} - F_{n-1}^{2}) + F_{n-1}^{2} - 2F_{n} F_{n-1}] F_{n}^{(1)} = (-2F_{n} F_{n-1} - F_{n}^{2}) F_{n-2}^{(1)} - 2F_{n} F_{n-1}^{2}$$

$$-F_{n} L_{n-2} F_{n}^{(1)} = -F_{n} L_{n} F_{n-2}^{(1)} - 2F_{n} F_{n-1}^{2}$$

by applying known Fibonacci identities. Finally, dividing by $-F_n$, $n \neq 0$ and rearranging, we have

(3.6)
$$L_{n-2}F_n^{(1)} - L_n F_{n-2}^{(1)} = 2F_{n-1}^2,$$

which we compare with the known

$$L_{n-2}F_n - L_nF_{n-2} = 2(-1)^n$$
.

If we let $D_n^{*(r)}$ denote the determinant of order (2r+1) which has successive members of the sequence $\{F_n^{(r)}\}$ written along its rows and columns in decreasing order such that $\{F_n^{(r)}\}$ appears everywhere along the minor diagonal, we conjecture that

(3.7)
$$D_n^{*(r)} = (-1)^{r(n+1)} F_n^{(r)}.$$

Equation (3.7) has been proved for r = 1 above, and r = 0 is trivial. When r = 2, it is possible to prove (3.7) by using the identity

(3.8)
$$F_n^{(2)} = [(5n^2 - 2)F_n - 3nL_n]/50$$

as well as (1.13). The algebra, however, is horrendous. The identity (3.8) can be derived by solving for the constants A, B, C, D, E, and F in

 $F_n^{(2)} = (A + Bn + Cn^2)F_n + (D + En + Fn^2)L_n$

which arises since $\{F_n^{(2)}\}$ has auxiliary polynomial $(x^2-x-1)^3$, whose roots are α , α , α and β , β , β . Two other determinant identities follow without proof.

$$\begin{vmatrix} F_{n+2}^{(1)} & F_{n+1}^{(1)} & F_{n-1}^{(1)} \\ F_{n+1}^{(1)} & F_{n}^{(1)} & F_{n-2}^{(1)} \\ F_{n}^{(1)} & F_{n-1}^{(1)} & F_{n-3}^{(1)} \end{vmatrix} = (-1)^{n} [F_{n-5}^{(1)} + 2F_{n-4}]$$

$$\begin{vmatrix} F_{n+2}^{(1)} & F_n^{(1)} & F_{n-1}^{(1)} \\ F_{n+1}^{(1)} & F_{n-1}^{(1)} & F_{n-2}^{(1)} \\ F_n^{(1)} & F_{n-2}^{(1)} & F_{n-3}^{(1)} \end{vmatrix} = (-1)^n [F_{n-2}^{(1)} - F_{n-2}]$$

TWO RECURSION RELATIONS FOR F(F(n))

EDWARD A. PARBERRY Well's College, Aurora, New York 13026

Some time ago, in [1], the question of the existence of a recursion relation for the sequence of Fibonacci numbers with Fibonacci numbers for subscripts was raised. In the present article we give a 6th order non-linear recursion for f(n) = F(F(n)).

Proposition. Let f(n) = F(F(n)), where F(n) is the n^{th} Fibonacci number, then $f(n) = (5f(n-2)^2 + (-1)^{F(n+1)})f(n-3) + (-1)^{F(n)}(f(n-3) - (-1)^{F(n+1)})f(n-6))f(n-2)/f(n-5)$.

Remark. Identity (1) below is given in [2], and identity (2) is proved similarly. Note also that $a \equiv b \pmod{3}$ implies that

$$(-1)^{F(a)} = (-1)^{F(b)} = (-1)^{L(a)} = (-1)^{L(b)}$$
,

which is used frequently.

(1)
$$F(a+b) = F(a)L(b) - (-1)^b F(a-b)$$

(2)
$$5F(a)F(b) = L(a+b) - (-1)^a L(b-a).$$

Proof of **Proposition**. In (1), let a = F(n-2), b = F(n-1) to obtain

$$f(n) = f(n-2)L(F(n-1)) - (-1)^{F(n-1)}F(-F(n-3))$$

$$= f(n-2)L(F(n-1)) - (-1)^{F(n-1)}(-1)^{F(n-3)+1}f(n-3)$$

$$= f(n-2)L(F(n-1)) + (-1)^{F(n+1)}f(n-3).$$

[Continued on page 139.]