FIBONACCI CONVOLUTION SEQUENCES
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The: Fibonacci convolution sequences {F,Qf’ } which arise from convolutions of the Fibonacci sequence
{1, 1,2,3,5 8, -, F,, } lead to some new Fibonacci identities, limit theorems, and determinant identities.

1. THE FIBONACCI CONVOLUTION SEQUENCES

Let the r™ Fibonacci convolution sequence be denoted {F,gr’}; note that ,_-50) = F,, the n™ Fibonacci
number. Then

n

(1.1) FIV = S FoiFi
i=0
n

12 - T R
=0

However, there are some easier methods of calculation.
Let the Fibonacci polynomials F,, (x) be defined by

(1.3) Fni2(x) = xFpi1(x)+ Fplx), Folx) =0, Fylx) = 1.

Then, since F,(1) = F,, the recursion relation for the Fibonacci numbers, F,+2 = Fp+7 + Fp, follows immedi-
ately by taking x = 7. In a similar manner we may write recursion relations for {F,g’)},
From (1.3), taking the first derivative we have

Frro(x) = xFheq(x)+ Fhlx) + Fpeq(x).
Since F,(1) = F,g”, taking x = 7 gives us the recursion relation for {F,f”} ,
i Fitl = Flly o FEY ey

Since the generating function for the Fibonacci polynomials is

Y _ = n
(1.5) T ,Z:; Falx)Y",

(1.6) (——X———>H7 - f Flrln
. xm,

it is easy to see that

(1.7) Fi = Efm

where F,f”(x) is the r ¥ derivative of the Fibonacci polynomial F(x). Thus we can write
1) _

(1.8) Fi = i e mit e

which enables us to make the following table with a minimum of effort.
We can extend our sequences for negative subscripts to write

. _ +7 ()
(1.9) Fr =~ Tl
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no Fao FVFR S
0 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
3 2 2 1 0 0
4 3 5 3 1 0
5 5 10 9 —4_‘ 1
6 8 20 22 14 5
7 13 38 51 40 20
g8 21 71 105 65
3 34 130 233 256 190

—
o
o
oo

235 474 594 511

where we note that {F,g’)} has 2r + 1 zeros, and F[Q’, =1, F,(QJZ =r.
Equation (1.9) can be established for r = 7 guite easily by induction. Assume that {(1.9) holds for 1, 2, 3, ---,
r,and forr+ 7 forn=1,2 -, k. Then by (1.8)

Flrtt) = plret) et 0)  plr o gkt 1) g qpkplett) g gkt 1)

= (-~ 7)k+2/'F{F+” (I"f‘” F(r)] = (= 7)k+2Fk ;.

which is equivalent to (1.9) forn =k + 1, fmlshlng a proof by induction.
Returning to (1.6), recall that the recurrence relation for F( has auxiliary polynomial (x? - x — 7}2
whose roots are, of course, a, a, §, 8, where a.= (1 ++/5)/2 and B=(1—-1/5)/2. Then,

(1.10) FIT = (A +Bnja” + (C +Dn)B"

for some constants 4, B, C and D due to the repeated roots. Since the Fibonacci numbers are a linear combina-
tion of the same roots,

(1.11) FIT = (A% + B¥n)Fppq + (C*+ D% )F g

for some constants A* B* C* and D* By lettingn =0, 1, 2, 3 and solving the resulting system of equations,
one finds A*=—1/5, B*=C*=D*=1/5, resulting in

(1.12) 5F) = (= 1)Fpeq + M0+ DFp_q,
which leads easily to
(1.13) FIY = oL, - Fol5

where L, is the n™" Lucas number.
Returning again to the auxiliary polynomial for { F,f”}, since (x2~ X — 7}2=x4 ~ xS x4 ox+ 7, we
can write

(1.14) iUy = 2Fl U+ £V, — 2 (1) — FY

n

2. SPECIAL LIMITING RATIOS
It is well known that

(2.1) im 1 oo o 7—%@

n— oo Fn

We extend this property of the Fibonacci numbers to the Fibonacci convolution sequences. First, (1.10) gives us
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FI" = (A +Bnja" +(C + Dn)B"

for some constants A, B, € and 0. Thus one concludes
(1)
F

lim nt1 _ im  [A*Bn+ 1) a+[C+Din+1)]Bl(B/)" _ a
o pfll) noe A +Bn+(C+Dn)B/a)"
Clearly, this holds for any {F,g”} since, by examining the auxiliary polynomial,
(2.2) F,f’) = pn)a” +q,.(n)p",
where p.(n) and g .{n) are polynomials in 7 of degree . Then, we have
(r) +1 nt 1
Firl n
(2.3) ,lim —”{—7— = lim prin + 1Ja™"" +q,(n + 1)f = lim prn+1)
- o0 r - Y
F) prln)a” +q,n)8" n peln)

While it is not necessary to be able to write p,fn) and ¢ .(n) to establish (2.3}, it would be interesting to find a
recurrence for these polynomials.
ltis not difficuft to show that

F
4 li =
(2.4) lim_ D 0
and that "
F(f*)
(2.5) lim 2— =g r*<r.

nee )
Flr

We also find o as a value for a special limiting ratio. We define
(26 Wi = Fll Fi 1R

For r = 8 the Fibenacci numbers themselves, W,fol =(-1)", butwhenr> 1, W,g') is not a constant. However,
we have the surprising limiting ratio,

fr)
w,
(2.7) Sim —ﬁ;:—} =d® r=1
Wn

To establish (2.7), we use (2.2) to calculate W,gr} as

W = footn+ )™ g otn + 106" 1 o ftn = 100" + g0 = 1)8" ] = [prin)d +q,(n)8") 2
= [pn + p o — 1)a°" +q,(n + 1)g(n - 1)827 +p fn + 1g (0 — 1)a"* 17"

+ppln = 1,0+ 1)a" 8] — [p2(n)a® + 2p,(n)g,(n)a"8" + g 2(n) B2

loln+ 1pln— 1) = pZin)] &® + [q (n + 1)g,ln ~ 1) = g(n)] 87" + R, (n),

where B,(n) isapolynomial in n of degree 2, but each term contains a factor of a° orﬁt, where s, ¢ are at most
two, since a=—1. Then, if pfn + 1)p,(n — 1) = p2(n) # G we find that

n rn+

Al wr) (r) pir} r),2
n Fn+7Fn—7_[Fn]

Please note that for the Fibonacci numbers themselves, it is indeed true thatp = —q = 7/{a— 8/ and
pln+ 1hpln — 1) - p2(n) = 0
That there are no other polynomials such that gfn + 7)ofn — 7) —pz(n) =0 is proved by considering

Fi = pidn)a™ +g,(n)B",
where p,.(n) is a polynomial of degree at most r. Consider
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Pln) = pn+1)pn—1)—
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p,(n)

which is a polynomial of degree at most 2r. Thus, Pln) # 0 for more than 2r values of n. Clearly, then, for all

large enough n, Pln) # 0.

3. DETERMINANT IDENTITIES FOR THE FIBONACCI CONVOLUTION SEQUENCES

Several interesting determinant identities can be found for the Fibonacci convolution sequences. First, we ex-

amine a class of unit determinants. Let

itk Fllh #i
F,g,)g F(r7 ,_—'57)
> TR
A EiD L

Then it is easily proved that 0,

F1)
(1)
Fn—7
£(1)
(1)
Fn—3

= 7 by using (1.14), since replacing the fourth column with alinear comhina-

tion of the present columns gives us the negative of the first column of J,+;. That is, since

L T N S T Y
| Fits Fily L Ll
Ay R EL L

L
AR Rl

so that 0, = D+ after making appropriate column exchanges.

Lastly, since D7 =1, 0, =7 foralln

Now, let D,grl be the determinant of order (2 +2) with successive members of the sequence {F,.(,”’]written

along its rows and columns in decreasing order such that /_.,gr}

Since {F,Cr}} has an auxiliary polynomial of degree (2r+ 2),

(r) (r) (r)
F n:‘2r+1l F nr+2r' £ n{f-2r~7 4

so that DM = £0 M, after (2r + 1) appropriate column exchanges. The auxiliary polynomial (x2
has a positive constant term when r is odd, making the last column the negative of the first column of 0

so that

ol (r)

Dfl’)

We need only to evaluate D,f’} for one value of n, then. Now, F,i’) =0 forn =0, %1, £2, -,

"
(-1 -1p7, =
but, for r even, a negative constant term makes the last column egual the first column of

2r+1qlr)  _ {r)
(—1)<" Dr ——Dn’H,

appears everywhere along the minor diagonal.

F(ﬂzﬁz is alinear combination of

(f) F(I’}

n+7/ n
x— 1)1
{r)

n+i-

{r)

Dn+7'

r odd;
D{')7 and

roeven,

+r, and F,(fL}, =1

Thus, Dr(fL}, = (~-7)r+7 since ones appear on the minor diagonal there with zeroes everywhere below. Then,

D,:r’ = 1 when r is odd, and D,fr) ={—1)" when ris even, which can be combined to

(3.2) plr -

The special case r = 0 is the well known formula, Fp+7Fph-7 —

(_7)n(r+7).
F2=(-1)".

A second proof of (3.2) is instructive. Returning to (3.1), apply (1.8) as

Py = Fd -

n+1 =~

(3.3)

Firrl -

F,gr+7),

taking r = 0. Subtracting pairs of columns and then pairs of rows gives
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Foe2 Frer Fidy ESV oo Fn Fneg
Far1 Fn  FFIT 0 0 Foyg Foo
bn = Fn Fn-1 F”) F,ﬂ) - Fn Fn-1 F(HI F,gz}
F-1 Fo2 Fi5 ETS1 | Foog Faez FITy FETS

Thus,

n = (FoFna—F2 )% = 1.
Notice that this proof can be generalized, and after sufficient subtractions, one always makes a block of zeroes
in the upper left, with two smaller determinants of the same form in the lower left and upper right, so that b, (r)
is always a product of smaller known determinants D(’ } r* < r, making a proof by induction possible. Each

higher order determinant requires more subtractions of pairs of rows and columns, but careful counting of sub-
scripts leads one to
(3.4) o - {[ngr/z)f -(0}22)], 1 even ;
' [D,(,(r_”/z)]z, r odd;

which again gives us (3.2).
The process of subtraction of pairs of columns and rows can also be applied to determinants of odd order.
For example,

7
(L H B | 0 A R
e O A P P

(1 (1) (1)
Fn) Fn—7 Fn—2 Freg /-(7)7 /_-(7)

Then, by applying (1.13) and known Fibonacci and Lucas identities, one can evaluate 0%, The algebra, how-
ever, is long and inelegant. One obtains, after patience,
(3.5) 5 = (-1)"E
However, 0/ can also be written out from the form given above on the right, so that
D* - (_”n+7F(7)= 2FpFpq /_-(7) "F,C%;F,C” FZF(”

n'n-1

H=1)""T+ F2 1 E <2F Py [FT = FLTy— Frog] - F2F[T)

[FpetFn— F2 )+ F2 = 2FnFo g F = (<2F,Fpq — F2)FIT, — 2F, F2

~Faln-2F1 = —FoLnFLTh— 2k, F2.,
by applying known Fibonacci identities. Finally, dividing by —F,, n # 0 and rearranging, we have

(3.6) Lo — 1, F1) = 262,
which we compare with the known
LypoFp—LnFpo=2(-1)".
Ifwelet D*(’} denote the determmant of order (2r + 1) which has successive members of the sequence { (r) }

written along its rows and columns in decreasing order such that {F('}} appears everywhere along the minor
diagonal, we conjecture that

(37) D;;{I’, - (__7)I’/n+7}/_-rgl’) i

Equation (3.7) has been proved for r = 1 above, and r = 0 is trivial. When r = 2, it is possible to prove (3.7} by
using the identity
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(3.8) F2) = (82 - 2)F, - 3nL,] /50

as well as (1.13). The algebra, however, is horrendous. The identity (3.8) can be derived by solving for the con-
stants A, B, C, 0, F, and Fin
FI2) = (A +Bn+Cn2)F,+(D+En+Fn?L,
which arises since {F,fﬂ} has auxifiary polynomial (x2 - x— 7)3, whose roots are a, a, aand 3, 8, 8.
Two other determinant identities follow without proof.
1L (1) /_-,51)7

n+2 "n+1
A EPEL) < P o

n

(1) (1) (1)
AT A

(1 (
Faz £y I

n

F"l( ;)1 F,{—)7 F(,‘ )2 = (——7)"[‘ n(._.}:? i n—-2]
n I‘W‘é I(I-) |

Yolnlolololok

TWO RECURSION RELATIONS FOR F(F(n))

EDWARD A. PARBERRY
Well’s College, Aurora, New York 13026

Some time ago, in [1], the question of the existence of a recursion relation for the sequence of Fibonacci
numbers with Fibonacci numbers for subscripts was raised. In the present article we give a 6™ order non-linear
recursion for fln) = F(F(n)).

Proposition. Let fin)= F(F(n)), where F(n) s the n ™ Fibonacci number, then
fin) = (5fln — 202+ (~ 1) V) gty — 3) + (~1)F0)#tn — 3) = (= 1)F 0 Vftn - 6))fin — 2)/tp - 5).

Remark. ldentity (1) below is given in [2], and identity (2) is proved similarly. Note also thata =4 (mod

3) implies that
(_”F(a/ _ (_”F(b) - F”L(al - (—7}L(b}

which is used frequently.
(1 Fla+b) = Fla)L(b)— (—1)PF(a— b)
(2) 5F(a)F(b) = Lla+b)— (—1)°L(b—a).
Proof of Proposition. In(1),let a= F(n— 2), b= F(n— 1) to obtain
fn) = fln = 2)L(F(n = 1)) = (-1)F OV E(—Fla - 3))
fin = 2)L(F(n — 1)) = (—=1)Fln = D q) Fln=-3115, _ 3)
fin = 2)LUFn — 1)) + (1) F* Vgn — 3

1§

i

I

[Continued on page 139.]



