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1. INTRODUCTION
The ordinary Lucas functions are defined by
(1.1) v = aj+ag, up = (] - agllay —az),

where az, a are the roots of
x?=pPx-0,

A= fa;—a2)2:P2 — 440, and P,Q are coprime integers. These functions and their remarkable properties have
been discussed by many authors. The best known works are those of Lucas [7] and Carmichael [3]. Lehmer
[6] has dealt with a more general form of these functions for which P = \/R and R,Q are coprime integers.

Bell [1] attributed the existence of the many properties of the Lucas functions to the simplicity of the func-
tions’ form. He added, “this simplicity vanishes, apparently irrevocably, when we pass beyond second order
series.”” The purpose of this paper is to define a set of third order functions Wy, V., Uy, and to show that these
functions possess much of the “arithmetic fertility”” of the Lucas functions.

Consider first the functions v,, and u,,, which are defined in the following manner. We let py, p2 be the roots

of
2

X< = x+s
and
Zay = vi+ugpy, 2ap = vytugpz,
wheres, r, v, uy are given integers, We then put
n .|
_ 2|9 P 21w
in = §|a 2| U1 ag|
where
§ = 1 p7|
1 P2|

If we select values for s, r, vy, uy such that v,, u, are both integers for all non-negative integer values of n,
then P = a; + ap and @ = ayap will be integers. | f we further restrict our choices of values forr, s, v7, v such
that (P,@) = 1, then it can be easily shown that the resulting functions v,, and u,, have many properties analog-
ous to those of the ordinary Lucas functions. Indeed, if we selects=A, r=0,vy=P, uy=1, the functions up,
and v, are the functions given by (1.1).

In this paper we shall be concerned with the third order analogues of the above functions. We let py, p2, p3
be the roots of

x% = Z+sx+t and 3a,-:W7+l/7p,-+U1p12 (i=123),

wherer, s, t, Wy, V1, Uy are given integers. We define

sla7 prop P 7a'7’p?‘ 3|1 P1a]
(13) Wﬂ :6_ CL/27 P2 p2 , Vn =6_ 7 ag pg Un :8‘ 7 ,02 CL% '
ag p3 P3| 1 a3 p2 1 p2 a3
where

97
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1 pq P?l
§=|1p2 PZ| #0.
| 7 p3 Pg
We alsoputP=a; +as+ag, @ =ajap + agaz +azay, R = ajapag, A =6 2

Let V be the set of positive integers. If we restrict the values ofr, 5, ¢ Wy, V7, U7 such that

(1) W,, V,, U, are all integers forany n AV,

(2) P Q Rareintegersand (P.Q,R) =1,

(3) thereexists u € N such that U;=Uj+gy (mod 3)forall ke,
the functions W,, V,,. U, have several characteristics similar to those of the Lucas functions. Functions similar
to W,, V,, U, have been discussed by Williams [ 10] and [11, (g = 3)], but for these functionsr=s =0, A=t

Conditions (1) and (2) are analogous to the two restrictions placed on the functions of (1.2). These two re-
strictions guarantee that there exists an integer m € /V such that u; =ur4m (mod 2) for any 7,k € N however,
we shall see that conditions (1) and (2) do not imply (3).

[t is necessary to demonstrate what the conditions on r, s, t, Wy, V7, Uy are such that (1), (2), (3) are true.
In order to do this, we require several identities satisfied by W,, V/,, and U,,. These identities, which are inde-
pendent of (1), (2), (3), are given in Section 2.

2. IDENTITIES

Itis not difficult to see from (1.3) that
(2.1 3" W, + pV)y + p2U,) = (W7+pV7+p2U1)",
where p = py, p2, p3. 1t follows that
IWnim = WolWm+tV Uy + tUp Ve + trUp Uy,
(2.2) Vptm = VoW + Wo Vi + sV Un + sV U + (s + tWU Uy .
3Upim = WUy + WoUpy+ Vi Vi + tUpy Vi # tUp Vg # (12 +$)Up Upy ,

W = W2 + 2tV U + trU2,,
(2.3) Vom = (sr+ U2 + 25V U + 2V Upy
BUpm = V2 4 WU + 22U Vi + (P2 +5)UZ

W3 = W2+ V3 +1(rP + 2rs + U, + 6ty ViU
+ 3trW U2, + 3t Y2 + 3t(r? +s)U2 Vi
(2.4) IV 3m = sV3 + (sr+ )i + 25)U3 + 65Wi Vg Upp + 3V W2,
+ 305t + Wy U2, + 3(t + 15 )0 V2, + 3152 + 512 + WU Z Vi,
U3zm = V3 + (r? + 3r% + 52+ 20 )U 3, + 61 Vg Uy + 3Up W2,
+ W V2 + 3(r2 + s )W U2 + 3(r2 + 2rs + tUZ V

3R ™ Wy = W2+ W Vi # (1% + 25 MW Upy = sV2 — (rs + )0 Vi # (5% = rt)UZ,, -
(2.5) 3R™V = W Vi = V2 = PPU Vi + (rs + U2,
3R™U_m = ~WmUpm + V2 4 rUmVm —sUZ, .

By using methods similar to those of Williams [12], we can show that
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LW, W Vg + 1tU g
IR ™ Wypy = | Vg Wy #+5Upy sV, + (rs + tUp, ,
Up Vit U Wy +rVey, + (r? + 5 |

|\ W, W, tV + rtUp,
(2.6) R ™ = | Vm Vi  sVm+ls+tiUn
Un Up Wyt Vg +(rZ +5)Upm|
W tUm w,
gﬁmUn—m |\ Vm WptsUn Val,
Um Vpa+rU, U,

'

W tUm tVm + rtlUm,
(2.7) 27R™ = | Vg Win+sUy sV + (s +t)Um, ,
Upm Vi #rUp W+ 1V + (r2 +$5)Um

Wn Vn Un
(2.8) Wn+m Vntm Untm | = Hn/Vm,
Wnioam Vn+2m Un+om

Wn Woem Wnrom
(2.9) 27\ Wntm  Wntom Wne3m | = —F;'"tZ/V,% .

]Wn+2m Wn+3m Wpram

Vn Vn +m Vn +2m

27\ Vntm  Vntom Vnedm| = —Hn/I’S‘f‘l‘)/V,% .

| Votzm Vn+am Vintam

Un Unim Uptom
27 \Uptm  Un+2m Un+3m :“HH/V,%'

|Un+2m Un+3m Un+4m|
where

[ Vi Um |
3
Ny = 3‘ Vo Uom |~ (Vm+rU,,-,)3—rUm(Vm+rUm)2—sU,%(Vm+rUm)— tU,, -

Let
Pm=al' +af +a3, Om = afay +a5'a3 +aga], Rm = afaf'ay = R™.

From (2.1} and (2.7), we have

(2.10) 3Py = W + 1V + (2 + 250U,
(211) 9 = 3W2 + 20V Uy + (202 + 45)U py Wiy — sV 2, = (51 + 360Uy Vi + (52 = 261U 2,
(2.7) 27Rm = W3 +tV3 + 1203 — (3t + 1MW Vi Upy + TW2 V py — SVE Wy

(25 + 122 Uy + (52 = 2t U + trV Uy — 15V UZ, .
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. 1 a7 a?’"
€m =| 1 a3 a22’"
|7 of "
and £, = e,%, then
(2.14) 27€m = ~27R%Me s = SN,
and
(2.15) 3%, = ANZ .
Itshould be noted that
(2.16) Em = P2.02 + 18P QR — 407 — 4P3 R — 27R2
and

A= r2%2 _ 185t +4s° — 43— 2742

If
Fix,y) = x5 rx2y - sxy2— ty‘?,

we see from (2.14) and (2.5), that
R™F(V iy + U, Um) = F{(tU2 = WUy = Wi Vi )3, (~ Wiy Upy + V2 + Uy Vi = sU2)/3 ).

If Wy, V4, Uy are selected such that Wy = 33, V7 =3b, U7 = 3c, where a, b, ¢ are integers and a + p7b + p?g is
a unit of the cubic field generated by adjoining py to the rationals, we can obtain an infinitude of integer solu-
tions of the Diophantine equation
Flx,y) = Flzw).
If we define

i

1 p1 07
Zn=517
7

2 P3|
p3 P3|

el

then (Bell [1])
P = (Zpt2 = 1Zns1 —5Zn) # (Znst — Znlp+ 202,

where p = p7, p2, p3. Using this result together with (2.1), we obtain

-1 m! mieiv i
(2.17) 3" Wpm = Z;‘,/—,m—_“lj/—)—, (Zoj+it2 = 1Zgj4i+1 — $Z2+1 Wy 'V, U],

-1 m! —i=f\ i 11]
3" Wom = Z_:}'/_/’./—(_m‘__-,ij_')? (Zoj4i+1— 12201 W VUL
]

> / o
3™ Y =E.'—.——”—’—.———.— Zojiy ViUl

where the sum is taken over integers /, / > 0 such that 0 </ +;j <m.
Finally, it should be noted that for a fixed value of n, each of Wy+4m. Vn+km. Un+km can be represented as
alinear combination of the k " powers of the roots of the equation

x3 = me2— Omx+Rm

consequently, we have
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(2.18) Wnt+3)m = PmWptk+2)m — CnWo+t(k+1)m + BmWa+km .
Vntk+3)m = PmVnttk+2)m = QmVpt (k+1)m * BmVatkm .
Untk+3im = PmUn+(kt2)m — QmUni e+ 1)m * BmUnskm -
The identities (2.1), (2.2), (2.6), (2.7), (2.9), (2.17), (2.18) are analogous to Lucas’ important identities (7),
(49), (51), (46), (32) and (33), (49), and (13), respectively.
3. PRELIMINARY RESULTS

We will now show how to obtain values forr, s, t, Wy, V¢, Uy in such a way that W, V,, U,, are integers for
any n € V. We require two lemmas,

Lemma 1. fW,, V,, U, are integers for all n € N/, then P, G, R are integers and one of the following is
true.
M 3wy, vy, Ug)? _
(i) 31Wyq, 3y ;, Vi==rU7 (mod 3), 3!, and 315
(i) 3wy, 3pu;, Vi =rUq (mod 3), 3t and r2+5 =0 (mod 3)
(iv) 3pw;, 31V4, 30U, Wy =~U; (mod 3),s=1(mod 3), and ¢ =—r (mod 3)
) 3wV U7, Wy=Uyg (mod3), V;=tU; (mod 3), 3ls, 311, and 3ft

Proof. Since Wo, Vo, Uy are integers, it follows from (2.3) that one of the cases (i), (ii), (iii), (iv) or (v)
must be true. In each of these cases, we see that

Vi+(r?+25)U; = 0 (mod 3);
hence, P is an integer.
Now, from (2.18) and the fact that Vg = Uy = 0, we have

Vs =PVo—-0QVy,
U3 = PU2~0U7,‘
thus, @V 7 and QU ; are both integers. Since 90 is an integer, we see that @ is an integer if 3V ; or 3fU;. If
3l(vy, Uq), then itis clear from (2.11) that @ is an integer. Using the equations
Vg = PV3-0QVo+ RVy, Ug = PUs— QU2+ RU;
and (2.7), we can show that B must also be an integer.

Lemma 2. |f the conditions of (i) of Lemma 1 are true, @ and A are integers.
If the conditions of (ii) hold, @ and A are integers if and only if 9l ¢
If the conditions of (i) hold, @ and A are integers if and only if t =r(s — 2r2) (mod 9).
If the conditions of (iv) hold, @ and R are integers if and only ifs=17 —tr — 2 (mod 9).
If the conditions of (v) hold, @ and R are integers if and only if s = t2— 17— tr (mod 9).

Proof. The proof aof the first statement of the lemma is clear from Eqgs. (2.11) and (2.7). We show how the
other statements can be proved by demonstrating the truth of the fourth statement. (The proofs of the others
are similar.)

We write

Wy =-Us+3L, V7= 3K,
where L. K are integers. Substituting these values for /7 and /7 in (2.11), we get
90 = ZU‘;[I —s—tr—r?] (mod9),

Hence, @ is an integer if and only if
s=1—tr—r? (mod9).

T1f x,y,z,--- are rational integers, we write as usual xly for x divides y, x/y for x does not divide y, and (x,y,z,)
.. " .. +
for the greatest common divisor of x,y,z,---. We also write yn||x to indicate that y"l x and yn q/x.
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Assuming that @ is an integer and repeating the above method using (2.7), we get

27R = [-1+12+ 25412 =52+ 2] U3 (mod 27),
Thus,

3R = (t+ )3~ (s— 1)BN(t+r)3+(s— 1)/3)U3 (mod 3).

Since (s — 7)/3 =rft + r)/3 and 3Jr, we see that A is an integer if Q is.
The answer to the problem of this section is given as

Theorem 1. W,, V,, U, are integers for any n  /V if and only if ane of the following is true.

(a) 3I(W7, Vs, Ug)

(b) 31wy, 3YU;, Vy=—rU; (mod 3), 3ls, 9l ¢

) 3wy, 34, Vi=rU;g (mod 3), 3)s, r2 +5s=0(mod 3), £ =rfs — 2r?) {mod 9)

@) 3wy, 31vy, 3VU;, Wy =U; (mod3),s=1(mod 3), t =—r (mod 3),s = 7 — ¢r — r? (mod 9)

(&) 3fW;V,U;, Wy=Uyg (mod3), V;=tU; (mod 3),3ls, 3lr, 3Vt s=t2~ 1~ tr (mod 9).

Proof. By Lemmas 1 and 2, one of the above conditions is necessary in order for W,, V,,, U,, to be inte-
gers for any n € V. To show sufficiency of the conditions, we note that in each case W, V2, Ua, P, Q, R are
integers. The fact that W, V,,, U,, are integers for any n € follows by induction on (2.18).

Corollary. Letn .
If the conditions of (a) are true,

W, =V, =U, =0 (mod3).
If the conditions of (b} hold,

W, =0V, =-rU, (mod3).
|f the conditions of {c) hold,

W, =0V, =rU, (mod3).
If the conditions of (d) hold,

W, = ~U,, V, =0 (mod3).
If the conditions of {e} hold,

w, = U, V,=tlU, (mod3).
Proof. These results are easily verified for n = 2. The results for general n & / follow by using induction

on (2.18).

For the sake of brevity, we shall say that the functions W, V,,, U, are given by (a), (b), (c}, (d), or (e} if

Wy, V1, Uq, r, 5, t obey the conditions of the cases (a), (b}, {c), {d), or (e) above. From this point on, we con-
sider only those functions W,,, V/,,, U,, which are given by one of these cases.

4. CONGRUENCE PROPERTIES MODULO 3

Since 3l (W,,, V,,, Uy, ) for Wy, V,,, U, given by (a), we will confine ourselves here to an investigation of the
congruence properties (mod 3) of W, I/, U, when they are given by (b), {c), (d) or {e). In each of these cases,
9l A and we let # = A /9. From the corollary to Theorem 1, we see that it is sufficient to discuss U, only.

We define u to be the least positive integer such that

U,’ = U,’+ku (mod 3)
forall 7 k € V. We further define

B = {X1. Xz, Xy},
where U,'EU7X,' (mod 3).

Lemma 3. ForW,, V,, U, given by (b), (c), (d) or (e, x and B are determined from the following results.

Case (i) 3|/Pr. The values of u, # {mod 3),B are functions of the values of # and @ (mod 3). These values
{mod 3) are given in Table 1.
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Table 1
| H a u R g
1 g1 2 0 {1, (0 +1)P}
-1 2 P {10}

~1 7 4 P {1,010}
~1 0 -1 4,8 P(1+Q) {1.1-1p -1,0-1,—(Q-1)P, 1,0}

0 P 6 P—1 {1.1,0-1-1 0}

0 -P 3 P+1 {1,-10}

Case (i)). 3fP, 3Ir
In this case, £ =2, R =PQ(Q — 1) (mod 3), and B= {1, P+ PO} .
Case (iii). 3lP
In this case, @ = —# (mod 3) and the value of A is independent of & and A. The values of uand 3 are
given in Table 2.

Table 2
R V' R R
! 0 | -F 6 | {1F0F-10) ‘
—1 7 F=0 4 {1,0-10}
- 1 | F£0 )\ & | (1LF-1,0-1-F 10}
—1 0 2 {1F} v
Here
F=(-W;+sU7)/3 for  W,, V,, U, given by (b),
F=(-Wi+rVi+(tr—3— r2)U7)/3 for W,, V,, U, givenby (c),
F=(-W;+rVys—sU7)/3 for  W,, V,, U, given by (d),
and
F=(-Ws—tVi+(s+2)U;)/3 for W, V,, U, dgiven by (e).

Proof. For Wy, V,, Uy, given by (b), put
Wy =3L V;=—-rU;+3K a=s/3 b=rt/y, Aj=L+rK+als Az =1, Az = L+alj.
Then it can be shown by substitution into (2.10), (2.11), (2.7), that
P=A1+A2+A3 Q= A1A2+A2A3+A3A1+5, = A71A2A3+bA;,
A2A3 = (A2+A3)2~ (Ag—Ag)z = (A2+A3)2——62 (mod 3).
Also, if 3fr, H=a2 - b (mod 3) and if 3, # =0 (mod 3). Hence, if 3},

a = P(A#A)— H (mod 3)

g =)PO=HI@Q+H—1) (mod3) when 3*/0
“\(A#4)(H - 1) (mod 3) when 3P,

Us = U1(A#A,) = U1(PQ +PH) when 3fP.
1f3lr,
P =2al; (mod 3)

Q = PlAA,) - a° (mod 3)

R = PQ(Q — 1) (mod 3) when 3#/P
) —(A+A,) (mod3) when 3P

Us = BAA U7 = P(Q+ 1)U when 3JP.
The proof of the lemma for W,,, V,,, U, given by (b) follows by using induction on (2.18).
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For (c), put
Wy=3L, Vi=r;+3K a=rt/3—1, b=rlt—rls—2r%))9, Ay = L+(a+1)Us,

Ao =L—rK Az =L+2rK+alj.
Then
H=2a’-b P=A;+As+A3 Q= A1Ar+AzA3+A3A71+b,

R = A1A2A3+bAy, (Ag—Ag}z = 2% AoA3 = (A2+A3)2—32 (mod 3).

For (d), put
Wy=Ug+3L, Vy=23K a=rK b=rlttsr)fd, A;=L+rK+Usr?—1)/3

Ao = L+/sK+Uqs(s —1)/3, Az = L—<Js K+Uq(s— 1)/3.
Then
H=1(a-Pl%~b P=A;+A2+A3 Q =AA2+A1A3+A2A3+b,

R = A1A2A3—bla+tAs+A3z), (As—Az)? = a2 AsAz = (As+A3z)?—2a% (mod3).

For (e), put
Vy=tU7+3K Wy =U7+3L, A7 = L+tK+U(1+2t%))3,

A2 = L+B1K+B7U1/3, € = L+BaK+BoU11/3,
where 37, B2 are the zeros of xZ #(t— rlx +1. ThenH =0 P = A;+As+A3.
Q = A1As+A3A1+A24A3, R = A1A243 (As—A3)? =0 AsAz = (As+A3)? (mod3).

The remainder of the proof of this lemma for W,, V,,, U, given by (c), (d), or (e) can now be obtained in the
same way as that for W,,, V,,, U, given by (b).

Corollary. 1fneN, 31U, if and only if Yln, where Y is the least positive integer value for m such that
3l Upy,. From the statement of Lemma 3, it is clear that Y = u, u/2 orno value for Y exists.

In the statement of Lemma 3, we have neglected the case for which 3YPr, 31 @ and 31 H. In this case, it can be
shown that u does not exist. By the definition of W, V,,, U,, we exclude this case; hence, we may not have
values of , 5, t, Wy, V7, U7 such that 3)Pr, 3| F, 271 A for W,,, V,,, Up, given by (b) or (c) or values of , 5, ¢,
Wy, V1, Ug such that 3)P, 31(F +P), 271 A for Wy, V,,, U,, given by (d).

We have now found the conditions onr, s, t, Wy, V4, U7 in order that the functions W,, V,,, U,, satisfy the
requirements (1) and (3) of Section 1. We give the conditions for (P,@,R) = 7 ((2) of Section 1) in Section 5.

5. FURTHER RESTRICTIONS ON 1, s, ¢t Wy, V4, Uy

It is not immediately clear how to selectr, s, £, Wy, V4, Uy In orderthat (P,Q,R) = 1. We show how such se-
lections may be made in

Theorem 2. Let 3G = (212 +6s)V 1 +(2r% + 7rs +9t)U 7 .

1. 1§ W,, V,, U, are given by (a), (A,Q R)=1if and only if (W;, V1, U7)=3 and (P,G,A)=2°‘3ﬁ, where
a> 0only ifz}’(s +r)(V 1+ U7)and 8> 0 only if none of the following is true.

() 3lrand Wy +tV;+t207=0 (mod 9)

(ii) 3fr, s=1(mod 3), and W; +tU; =0 (mod 9)
(iii) 3)r, 3ls, and Wy (W1 +rV 7+ U41) =0 (mod 27)

(iv) 3, s=—1(mod3), and 9117; .

2. If W, V,. U, are given by (b), (c), (d), or (e), then (A.Q,R) = 1if and only if (W;, V4, Us) =1 and
(P,G,H)=2%3", where a> 0 only if 2/(s + r)(V 7+ U7) and y> 0 only if 3/F.

Proof.' We first prove the necessity of the conditions of the theorem.

If p (#3)is a prime and pl (W;, V7, Uq), then it is clear from (2.10), (2.11), and (2.7) thatpl (.0, B). If
91(Wq, V4, Uq), then 3| (P,Q,R). Hence, if (P.Q,R) =1, (Wq, V4, Us)I3.
Now, suppose thatp (# 3) is a prime divisor of (PG, A ). Since
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Wy = ~rVy—(r?+25)U; (modp),

we have
=270 = (2 +3s)VZ+(2r5+ 7rs + 90U 1V 1 + (r* +4sr2 + 6tr +5s2)UZ  (mod p).
Since
(5.1) —3A = (23 + 7rs +98)2 — 4(r2 + 35)(r* + 4512 + 61r +52),
we see that

27-4-(r° +35)Q = 962 (mod p).

l‘(,17)(20 + 35}, then pl Q. 1f pl (72 + 3s), then, from (5.1), p|(2r +7rs +9t) As a consequence of these two
facts, we deduce that pl (rs + 9¢) and pl (3tr — 52); thus, pl (r? + 4sr° + 6tr + s2) and pl Q. Combining (2.15)
and (2.16), we get

27%(P?0? + 18PQR — 40° — 4P3R - 27R%) = ANF ;

consequently, if pl(Q,P,A) and p # 3, then pl R. Thus, if (P,Q,B) = 1, then (P,G,A) = 2%3° ((P,G,H) = 2%37).
1£21(P,G,A) and (P,Q,R) =1, then 2JQ. Q is odd if and only if (s + g)(V 1+ U ) is.1£ 3|(P,G,A) (or 3I(P,G,H))
and (P,Q,R) = 1, then 3/(Q,R). We will show the conditions under which 3/(Q,R) for part 1 of the theorem
only. The conditions for part 2 are quite easy to obtain from results used in the proof of Lemma 3.
Since 312 and 3| A, we have
Vqi/3 = —(r2+25)U1/3 (mod3) and r%2+s = rt (mod 3).

We now deal with four cases.

(i) 3z 1£3lr, then 3ls and 31 Q. Hence 3}/Q,R) if and only |f3J((W,/3+rv,/3+r2U,/3 )

(i) 3Vr, =1 (mod 3). Here we have 91 V7 and tr =—1 (mod 3); thus, s° — 2¢r = 0 (mod 3) and 3/ Q. Hence,
3Y(a,R)if and only if 3Y(W./3 + tU 1/3).
3)r, 3ls. We must have 31t and 310, (R,@)isnot divisibleby 3if and only if Y Wq(W1/3 +1rV /3 +U 1/3).
3/r, s =—1 (mod 3). Once more, we get 3lt. Also U ;=—V (mod 9); hence 31Q. 3/(R,@) if and only if

3YW4/3.
We now show the sufficiency of the conditions. Let p (# 3) be a prime such p!(P, @, R) and p} A. Put

T=V;+rUy. SinceplE;and pfA, we must have plV 7 and

(iii)
)

(iv

(5.2) T3 =20 - sTUZ - w3 = 0 (mod p).
Also
3W; = —rT—2sU; (modp) and pl270;

hence,
(5.3) T2(=r2 = 35) + Uy T(=sr— 9t) + UZ(~s% + 3tr) = 0 (modp).
prlU; thenp|V7 andp|l/l/7 SupposepkU; then

“9t—rs -35-1° 0 3rt—s2 -35-r? 0

—s —r 1 TU;’ + —t —r 1 =0 (modp).
3rt—s2 —9t—rs  -35—1r° 0 Gt—rs  —-35—1?

Evaluating the determinants, we have
—3ATU;" +rA = 0 (modp)

and, consequently T=3"Tr/; (mod p). Putting this result into (5.2) and (5.3), we get 2 +3s=0 (mod p)
and 2r3 + 9sr + 27t =0 (mod p). By (5.1) pl A, this is a contradiction; thus p|(W;, V1, U7 ).

If 31(P,@,R) and 3YA, then W, V,,, U, are given by (a) and we discuss two cases. | 317, then 3/'s and from
(2.10), we must have 91¢/;. Using these results in (2.11) and (2.7), we see that 91/ 7 and 91WW;. 1f 3/r, we ob-
tain from (2.10) the fact that

V1/3 = —r(1+2§)U;/3 (mod 3).

Putting this result into (2.11), we deduce
(—s—s2+tr)(U7/3)% = 0 (mod 3).
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Since 3f A, 31U1/3 and 31V 4 /3, from (2.7), we have 3, /3.
Ifp (#3) is a prime and pl(P,Q,R,A ), then

4.27(r +25)0 = 962 (mod p)
and plG. 1fp =2, then 21(P,G,A ) and we have 2(s + r)(U; + V¢).
1£31(P.Q,R,A) and Wy, V,, U, are given by (a), it follows from (2.10) that
Vi /3+(rP+25)U1/3 = 0 (mod 3).
Hence,
G = 2rlrV1/3 + (r? +25)U1/3) +3rsU1/3 +9tU /3 +65V1/3 = 0 (mod 3)
and 3/(P,G,A). By the reasoning given above, one of (i), (ii), (iii), or (iv) must be true. If Wy, Vp, Uy, are given
by (b), (c), (d), or (e), then by Lemma 3, 3| H, and we have

—4.27-(r2 + 25)Q = 962 (mod 27);

hence, 3(P,G,H) and 3| F.
The values of a, 8, yin Theorem 2 can be bounded. We give these bounds in

Lemma 4. 1f(P.QR)=1 thena<3,8<4,andy<86.

Proof. 1£8l(P,G,A), then
—12(r2 + 35)Q = 962 (mod 8) .

Since Zj/(r‘2 +3s), we have 21@ and it follows that 2| A
1f3>4 )
3W1/3+rV1/3+(r2+2s)U7/3 = 0 (mod 81)
and
30 = —[(r? +3s)V1/3)2 +(2r3 + 7rs + 9)(U 1 /3)(V 1/3) + 3(s° — 2rt)(U 1/3)%] (mod 243) .

1f 27)/(r? + 3s), then 91Q. 1f 271(r? + 35), we have 317, 3ls and (r/3)2 + (5/3) = 0 (mod 3). Since 871 A, we also
have r/3 =t (mod 3). Since

—3Q = (7rs + 96)(U 1 /3)(V1/3) + (6rt +s2)(U1/3)? (mod 27)
and 7rs + 9t = 6tr +52 = 0 (mod 27), it follows that 91Q. From the facts that 9@, 8714, 271N, and
Eq = AIN;/27)%,
we see that 3! A,
Ify=> 86, then 381-3A and

—4-27(r% + 35)0 =8G? (mod 38);
hence, 3°(r2 + 35)Q. Itis not difficult to show that 91Q. Since 3IV; and 381 A, we have 3 70|A/V$, and conse-
quently, 31 A.

6. PROPERTIES OF W,, V,,, Uy,

In the following sections, we will be demonstrating several divisibility properties of the W,, V,, U, func-
tions. Most of these results depend upon

Theorem 3. . \ine N, (W,, V,, U,)3

Proof Suppose p (¥ 3) is a prime such that pl(W5, Vo, Us). From (2.10), (2.11), (2.7), it is clear that
pl Py, plQs, pl R. Since Py = P2 — 20 and @5 = 02 — 2RP, we have p|(P.Q,R), which is impossible by defini-
tion of W,,, V,,, U,. 1£91(Wo, Vo, Us), then 31R, 31P5, 9105; hence, 31(P.Q,R). The theorem is true forn =17,
2.

Suppose n > 2 is the least positive integer such that pl(W,,, V,,, Uy, ), where p (* 3) is a prime. Since PR, by
(2.18), it follows that

PWp—g = QWp_p, PVp_y = QVp-2, PUpn-1 = QUp- (mod p).

If plP, then pyQ; hence, pl(W,_5, V-2, Un-2), which is impossible by the definition of . If pl@, then
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pl(W,_7, Vpeq, Un-1), which is also impossible. This enables us to write
Wp-y =P 1QW,_5, Vpoy =P 10V, Upg = P 1QU,_5 (mod p),
where P~ 7040 (mod p). From (2.2), we see that
Wy, =P 1QW,g, V=P 'QV,q, Uy =P 10U,-; (modp)
and consequently pl{W, -1, Vn=1, Un—7), which is impossible.
Suppose n > 2 is the least positive integer such that 91(W,,, V,,, U, ). From (2.2), it is evident that
3N\ Wpt1, Vnter, Uner).

If Y has the same meaning as that assigned to it in the corollary of Lemma 3, we have ¥ln and Wln + 7; that is,
¥ = 1. Since 3|/W,,_3 and 3| R, we have
PW,-1/3) = Q(W,_5/3) (mod 3)

and similar results for I/,,-7 and U,,—7. By reasoning similar to that above, we obtain the result that

NWpe1/3, Vno1/3, Un-1/3),
which cannot be.

Corollary. \fnel, (Up, V,, RI3.

Proof. tp &3)isaprimeandpl(Up, V,, R), then pl W,,, which contradicts the theorem. f 91(U,, V,p, R),
then by (2.7), 871W3 and 91W,, which is also a contradiction.

We have, with the aid of Theorem 3 and Lemma 3, completely characterized all the divisors of (W),, V,,, Up, ).
We will now begin to develop some results concerning 0, = (V,,, Up, ). It will be seen that the divisibility prop-
erties of D, are similar to those of Lucas’ u,, (Carmichael’s O, ). In fact, we have analogues of Carmichael’s
theorems [, 11, 11, 1V, VI, X, XII, X1, XVII (corollary), in Theorem 3 (corollary), Theorem 3, Lemma 3,
Theorem 4, Theorem 5 (corollary), Theorem 7, Theorem 8, Theorem 8 (corollary), Theorem 7 (corollary), re-
spectively. We also have the analogues of Corollaries | and |1 of Carmichael’s Theorem VIII as a consequence of
Theorem 5 and a result of Ward [9].

Theorem 4. fn, kN and mlD,,, then m| Dy,
Proof. This theorem is true for k = 7. Suppose it is true for k = .

Since
3V(jit1)n = VaWin + Wy Vip +sVipUp + sV Ujn + (s + t)Up Uy
and
3Ugjr1)n = WinUn + Ujn Wy + Vi Vin + Ujn Vo # 1Un Vi + (1 +5)Un Ujn

we have m|D(j+71)m, when 3fm. 1f 3Im, then 3W, and 3|0, hence, 3m|3V (j11)n, 3m|3U (j11), and
m|D(j+7;m. The theorem is true by induction.
Let D¢, be the first term of the sequence

Dy, D2, D3, -, D, -
in which m occurs as a factor. We call w = w(m) the rank of apparition of n.
Theorem 5. |f n N and m is a divisor of 0,,, then w (m)ln.
Proof. Suppose w/n; then n=kw+(0 <j < w). From (2.2)
3V, = Vil + WiVikey +sVilge + Vi U+ (rs + Uk Uj,
3Up = UilWkes + Willke +ViView * Uk Vi + rUiUes +(r2 +sWUkolj -

1£3fm, m\(ViWiy, UiWieo) Since mlDyes, (m, Wieey) = 1 and mlD; .

1f 3lm, then 31Wy(, and 3|W,,. If { is the rank of apparition of 3, we know that ¥ln and Ylkcw; hence,
Ylj and 31(W;, V;, Uj). We now have 3ml(V;Wey, Uil ) 1t 3lm, then (m/3, Wiy ) = 1, m/31(V;, Uj),
31(v;, U;) and consequently m|D;. 1f3%Im and a > 1, then 3 W ¢, and m1D;.
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If ¥, we can find / < w such that m|0;. This contradicts the definition of .

Corollary. 1fnmeN, then Dy, n)=(Dpm, Dp ).

Proof. This result follows from the-theorem and a result of Ward [9].

Corollary. 1f m,n are integers and (m,n) = 1, co(mn) is the least common multiple of w(m) and w(n).
7. THE LAWS OF REPETITION AND APPARITION

We have defined the rank of apparition of an integer m without having shown whether it exists or, if it does
exist, what its value is. We give in this section those values of m for which  exists and we partially answer the
question of the value of w for these m values, The Law of Repetition describes how w (p”) (o aprime) may be
determined once w(p) is known. In order to prove the Law of Repetition, we must first give a few preliminary
results,

Lemma 5. Suppose 3V R and 310, then 31(Py,, Q) if and only if 91 D3p,. 1 3YA, then 31(Py,, Q) if
and only if 910,,.

Proof. 11910y, then 31Wy and 31(Py, Q). 1 A =rZs? +5 ~ tr# 0 (mod 3) and 31(P,, Qpp), then

r(l/m/.';’}+(r2+25)(Um/3) = 0 (mod 3)
and
—5lV iy /3)2 = Uy 30V i /3) + (52 = 2tr)(Upy /3)2 = 0 (mod 3) .
1f 317, then 3Ys; hence, if 31U,/3, 910, 1£ 3, then (V1 /3) = —r(r? + 25)U, /3 (mad 3); thus,
~A(Up/3)? = 0 (mod 3)
and 910,,.
1f 9103, we have 31P3,,, and 3123,,. Now

P3m = P2 —30mPm + 3Rm,
Qzm = 03 = 3Rm PO + 3R, ;
consequently, 31(P,. Qm). 1£31(P,,, @), then since
V3m/3 = PmVom/3 - QmVm/3 = 0 (mod 3)

and
Usm/3 = PlUom/3 - 01U, /3 = 0 {mod 3),

we have 9103,
Lemma 6. Suppose 34//?, 310, and 31 A 1f 3}/Pm, 9105, if and only if ane of the following is true.
(i) 3ls, 3¢, 3fr, Wy =Upy # 0 {mod 9), and 91V, .
(i) s=1(mod 3),t=—~r#0{mod3), W, =—U,, #0 (mod 9) and V,,, = rl,, (mod 9).
(i) s=—1(mod 3), 3¢ 3Jr, and Wy, =—rVp, + Upy, £0 (mod 9).
Proof. Since 3JP,, and 31A, it is clear that 3/
We show the necessity of ane of (i), {ii}, or (iii). I1f 9105, then

(st + Uy /312 + 25(V 1y /3N U /3) + 2V 1 J3) W,y /3) = O (mod 3)
and
(Vi /302 4 2(W py /3)(Upy 3]+ 20(U g /3HV 1y /3) + (1P + 5 ){Upy /3) = 0 (mod 3).
1f 91U,y,, then 91V, and 31P,,, which is impossible. If 91V, then 3l(rs +t) and (1 + $)Upy = Wy, (mod 9).
Now since 3(s + 1), we have 3ls — 7 or 3ls. If 3I(s — 7), then 3! (r? + 25) and 3|P,,. If 3ls, then 3t
and W, = U;y, #0 (mod 9).
If 9}/Um and .9J(I/m, then
Wy — (sr+ t)V y +sUp, = 0 (mod 9)
Wy + Vi — (1412 +5)Upy = 0 (mod 9)
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and
rls + 1)2V g = —(s + 1)Uy, (mod 9).

If 3ls, rVpy =—Up, (mod 9) and 3P, 1fs =1 (mod 3), then ¢ = —r (mod 3), rV,, = Uy, 0 (mod 9)
and W,,, = —U,, (mod 9). If s = —1 (mod 3), then 3lt, and Wy, =—rV,, + Upy (mod 9).

It is clear that any one of the conditions (i), (ii), or (jii) is sufficient for 9105, .

Theorem 6. 1£3FR, Y is the rank of apparition of 3, and .9}/0"[,, then the rank of apparition of 9is o/,

where the value of gis given below.

l. 3fA.
In this case, W,, V,,, U, are given by (a) and the value of o'is a function of the values (modulo 3) of #; /27,

A, P, Q. The values of o are given in Table 3.

Table 3
N /27 A P a o }
0 +7 P a 2
£1 —7 | 1 | 21 4
+1 -7 +7 g 8
+7 -1 0 a 8
+1 7 P a 13

. 31A.
Here 0= 2if 3fPy and one of the following is true.
(i) 3ls, 31t 3fr, Wy = Uy # 0(mod 9) and 911y ;
(i) s=1(mod3),t=~r#0(mod3), Wy =-Uy #0 (mod 9), and Vy, =rl/y, (mod 9);

({ii) s=—1(mod 3), 31t 3fr, and Wy =—rVy + Uy #0 (mod9).
o =3 if 3lPy.
g=6if 3}(P¢ and none of (i), (i), (iii) is true.
Proof. Since 310y, we have 271y ; hence
Ey = ANy /27)%
11314,
PyRy = Qy(QyPF— 1) (mod 3).

1f 31Py, then 3lay and 91(V3y, Usy ). 1f 3Py, then
Ry = Py 0y (Qy— 1) (mod 3);

thus, @y =—1 (mod 3) and Ay =—Py (mod 3). Since
Poy = PG —20y =0 and Qg = 0~ 2RyPy = 0 (mod3),
it follows from Lemma 5that 9|Dg¢, and 9}/0311,. From Lemma 6, we see that 9|02w if and only if one of (i),

(i) or (iii) is true.
1£3YA and 871V 4, then 31E 4, 31(P2, 02) and 0= 2.

[f A =—1(mod 3) and 87/ 4, then
PR = P202 -0 +1 (mod3).

Using the formulas
Pog = PZ—20x and Qo = QF — 2PiR.

we see thatif.}’{P, then 8 =1 (mod 3) and Pr=0s=1 (mod 3), Qp=P1=—-1 (mod 3), Qg=PFPg=0 (mod 3);
consequently, o= 8. The remaining results for this case are proved in the same way.

If A =1 (mod 3) and 87V 7, then
PR = P202 -0 -1 (mod3).
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Using the formulas
Pﬂ+3 = PPn+2“ [ZP,,+7+/?P,,

0p+3 = 00n42— PROps1 + R0,

we see that if 3|7, then @ = —1 (mod 3) and P73 = Q73 =0(mod 3). If 3JP, then A =P(Q° - Q~ 1)
and P73 =043 =0 (mod 3).

Theorem 7. (Law of Repetition). Let p be a prime. If, for A\ > 0, p™ #3, 2 and pMB,,,, then
p‘”}‘HDmypa, where (v, p) = 1.

ifp™=2and vis odd, p@*7| Do and 410y, 11p™ =3 and 3YA, then

3D and Y Dpmp, it 7lv.

mr3e !
Here

T = o/lm/y, o),
where 1, o have the meanings assigned to them in Theorem 6. |f 31 R, then 30, for any n e V.
Proof. Since p is a divisor of p//[ilj!p — i — j)!] when i,j # 0,p, we have (from (2.17))
3p"’Vmp = prr’,_’Vm (mod p*2)
3P Wy = pWE U, (mod p™*2)
ifp#2orifp=2and A> 1. Ifp # 3, then pfW, ; hencep)‘HHDmp. By induction p”"‘HDm o If

P
Atat] A+t
pte & Dmi.lpa' then p"7¢ 7‘(Dmpa/_1' Dmpa+7) = Dmpa'

which is impossible. If p = 2 and X= 1, 3V 5, =3U ., = 0 (mod 4); hence, 2°‘+7|02am and 4YD ;..
£ 3M D, and N> 1, then 31y, and 3\ > N+4, 2\ +2 > \ +4. Using the triplication formulas (2.4), we have
Mgy, and 33903,

or 371D, Also
IV 3 = VW2 (mod 3M4)

9U3m = 3UmW?2 (mod 3*%)

Since YW, 52 s
3V D3y, and 3V ND3,.

£ 311D, then Y1m and 910, it and only if oy |n. Since o Im7, we have 9107 and 3** 1|0 4. V1),
then oy fvm and 9Oy, - mr3

1317 and 910, then 87|W50r 91W,,, which is imp ossible.

The Law of Apparition gives those primes for which the rank of apparition exists and also gives us some in-
formation concerning the value of the rank of apparition. We first define an auxiliary function y,,.

If p is a prime such that p}3W ;R we define the function y,, to be the Lucas function u,, of (1.1), where
a7 +ap=g(modp), ayaz =#% (mod p), and

h = /‘2+3s, g = 2r3 +9rs + 271

Theorem 8. (Law of Apparition). Ifp is a prime such thatpj/ﬁ, then w, the rank of apparition of p, ex-
ists. If p =3, then w = Y. Suppose p}/.?/?,' then w(p /1P (p), where the value of ® is given below.

We let p =g (mod 3), wherelgl = 7.

IfpfAN; and (Alp)=—1, then (p — 7)fc and Dp)=p?-1.

prtA/V th and (Alp) = +1, then ® (p) = p — 1, when Vip-g)/3=10 (mod p); ®(p)=p? +p + 1, when
Y (p-q)/3 20 (mod p).

|fp¢A/V7, (Alp)=+1,and plh, thenp =1 (mod 3) and ® (p) =p = 1, when (glp)3= 1:® (p)=pZ+p + 1,
when (glp)3 # 1.
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IfpfYAand plNy, then®(p) = p— 1.

Ifp=2andplA, then @ (p)= 4.

Ifp #2 plA and pfN;, then pleo and ®(p) = plo — 7).

Ifp#2 plA and pliy, then ® (p) = p, when plG; @ (p) = p — 1, when p)G.

Proof.  These results may be deduced without much difficulty from (2.15) and results of Engstrom [5],
Ward [8], and Cailler [2]. (See also Duparc [4].)

Corollary. 1f we define ®(p”) =p" ' ®(p)forp #3, ®(3%) =0y, ®(3") = 3"29(32) and @ (mn) to
be the least common multiple of @ (m) and ® (n), when (m,n) = 1, then > (m)|® (m).

If p is of the form 3k + 7 andpkA/V;H, we can sharpen some of the results in the Law of Apparition.

Theorem 9. Letp (=1 (mod 3)) be a prime such that pYAN (R, If (Alp) = —1, wl(p? = 7)/3if and
only if (Rlp)z= 1. 1f (Alp)=+7 and y (p_q)/3 # 0 (mod p), then wlp? +p+1)3ifand only if (Rlp)z = 1.1
(Alp)=+1and y(p-q)/3=0(modp), wl (p — 1)/3 onlyif (Rlp)z=1.

Proof. 1f(Alp)=~1, then (E4lp) = —7 and the polynomial x2 — Px2 + Qx — R factors modulo p into the
product of a linear and irreducible quadratic factor. Let K = GF(pZ) be the splitting field for this polynomial
modulo p and let the roots of
(7.1) x2_pPx?-0x-R =0
be 8, ¢, Yin K. Then in K

07 =06, x=¢" x"=¢, R=00x=0¢"".
1f RP=1)/3 = 1 (mod p), we have
(7.2) 6(p—7)/3¢lp’—1)/3 =7 and oP=1)/3_ ¢(p2—7)/3 - ¢p(p2—7}/3 ]

Since pYA, it follows that plDgy2. 7)/3. If RP=1)/3 L 1 (mod 3), we cannot have (7.2). Since pJAN 7,itis clear
that p}0 (p2-1)/3. 5

f(Alp)=+1 andp)(y(p_q)/g, the polynomial x° — rx“ — sx — tis irreducible modulo p; hence, the polyno-
mial x3 — Px2 + Qx — R is irreducible modulop. If K= GF(p3} is the splitting field of this polynomial (modu-
lop)and 8, ¢, x are the roots of {7.1) in K, then

0P =9, 0° =y, 0 =6, R=07PP,

2

1£RP-173 _ 1 (mod p),

9(,03—7)/3 -7 gp(p2+p+7)/3 _ gpz(pz+p+7)/3 _ 6(p2+p+7)/3',

and

henceplD(p2+p+7)/3. If H(p_”/g #7 (mod p), thenpk0p2+p+7)/3,

1f (Alp) = +1 and ply (p—q) 3. the polynomial xZ — PxZ'+ Qx — R splits modulo p into the product of three
linear factors. I tis not difficult to show that ifplD(p_”/g, then RP=1)/3 = 1 (mod p).
We have not discussed the functions

B, = (W,, V,) and Cn = (W, Up)

which are somewhat analogous in their divisibility properties to Lucas’ V,, or Carmichael’s S,. The functions
B, and C,, behave in a rather complicated fashion and in a further paper results concerning these functions will
be presented together with other results on the W,,, V,,, U,, functions.
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PHI AGAIN: A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND
THE LIMIT OF A RATIO OF MODIFIED BESSEL FUNCTIONS

HARVEY J. HINDIN
State University of New Y ork, Empire State College-Stony Brook University, Stony Brook, New York 11790

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression,
D, H. Lehmer derived a formula for their evaluation in terms of modified Bessel Functions {1]. We have

(1) F(a;b) =apg+t '—7_ + ”L Foee = [‘701371 az, ]/
ay az

where a, = an + b. |t was shown that

(2) Flab) = L0

where a=h/a and /, is the modified Bessel function

> at2m
) lafe) = i™Jaliz) Z I iZI/fI}‘ (a+m+1) °

m=0

Using (1) and (2) with ca = 2/2 and b = ¢/2, we have

{4) Flab) = [b, a+b 2a+b, -] = lo-1lea)
1o f(ca)
Asa— o (a— 0}, in the limit (Theorem 5 of [1]),
lo-1fcal)
oMo I, (ca)
But, forb =1, {c = 2), F((,1) is the positive root of the quadratic equation

{6) 1+ 1=x
X

(5) = F0b) = [b b b ].

which is represented by the infinite continued fraction expansion [1, 1, 1, ---1.
[Continued on p. 152.]



