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1. INTRODUCTION 

un = (a"~a2)/(ctf -a2) 
The ordinary Lucas functions are defined by 

(1.1) vn = tf + 4, 
where a / , a2 are the roots of 

x2 = Px- Q, 

A = (aj~a2) =P2 -4Q, andP,£? are coprime integers. These functions and their remarkable properties have 
been discussed by many authors. The best known works are those of Lucas [7] and Carmichael [3] , Lehmer 
[6] has dealt with a more general form of these functions for which P = >J~R and R,Q are coprime integers. 

Bell [1] attributed the existence of the many properties of the Lucas functions to the simplicity of the func-
tions' form. He added, "this simplicity vanishes, apparently irrevocably, when we pass beyond second order 
series." The purpose of this paper is to define a set of third order functions Wn, Vn, Un, and to show that these 
functions possess much of the "arithmetic fertility" of the Lucas functions. 

Consider first the functions vn and un, which are defined in the following manner. We let p^, p2 be the roots 
of 

.,2 
and 

2a-j = i// +U1P1, 

where s, r, v^u-j are given integers. We then put 

rx + s 

2a2 = i// + u-ip2 

4 
where 

u 

» P1 
1 92 

_ 2 
n ' 5 

/ anj 

1 an
2 

If we select values for s, r, v 1, ui s u c n that yn> un a r e both integers for all non-negative integer values of/?, 
then P = a-j + a2 and Q = a-ia2 will be integers. If we further restrict our choices of values for r,s, vu u-j such 
that (P,Q) = 1, then it can be easily shown that the resulting functions vn and un have many properties analog-
ous to those of the ordinary Lucas functions. Indeed, if we selects = L, r= 0,vi = P, ui= 1, the funct ions^ 
and vn are the functions given by (1.1). 

In this paper we shall be concerned with the third order analogues of the above functions. We let p/ , p2, ps 
be the roots of 

x 3 = 

where/; s, t, Wi, Vj, U-t 

(1.3) Wn = | 

rxz + sx + t and 3a,- = W1 + V-JPJ + Uipj (I = 1, 2, 3), 

are given integers. We define 
a" P1 p\ 
aP2 p2 pi 

n 9 
&3 P3 P3 

. Vn 
3 
5 

/ a? pf 
7 4 4 
1 a»3 P2 

- Un 
_ 3 

8 

1 P1 a? 
/ p2 0% 

7 P2 a-3 

where 
97 
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/ Pi Pi 
1 92 P$ 

,2 P3 P% 

* 0. 

\N& also putP = ai+0,2 +CL3, Q = aia2 + a2a3 + a3CLi, R = aja2aj, A =5 . 
Let /I/ be the set of positive integers. If we restrict the values of/-, s, t, Wf, Vj, U7 such that 
(1) Wn, Vn, Un are all integers for any n e/l / , 
(2) P, Q, R are integers and (P,Q,R) = 7, 
(3) there exists p, e N such that U-, = Uj+k^ (mod 3) for all i, /r e /!/, 

the functions Wn, Vn, Un have several characteristics similar to those of the Lucas functions. Functions similar 
to Wn, Vn, Un have been discussed by Williams [10] and [11, (q = 3) ] , but for these functions r = s = Q, A= I 

Conditions (1) and (2) are analogous to the two restrictions placed on the functions of (1.2). These two re-
strictions guarantee that there exists an integer m e/V such that u,=u ,+km (m°d 2) for any i, / re N; however, 
we shall see that conditions (1) and (2) do not imply (3). 

It is necessary to demonstrate what the conditions on r,s,tf W], I / / , Uj are such that (1), (2), (3) are true. 
In order to do this, we require several identities satisfied by Wn, Vn and Un. These identities, which are inde-
pendent of (1), (2), (3), are given in Section 2. 

2. IDENTITIES 

It is not difficult to see from (1.3) that 

(2.1) 3n'1Wn+pVn+p2Un) = (W1+pV1+p2U1)
n . 

where p = p/ r P2, p j . It follows that 

3Wn+m = WnWm + tVnUm + Wn Vm + trUmUn , 

(2.2) 3Vn+m = VnWm + WnVm+sVmUn+sVnUm + (rs + t)UnUm. 

3Un+m = WmUn + WnUm+VnVm+rUmVn+rUnVm + (r2+s)UnUm, 

(2.3) 

V2 Wi,+2tVmUm + trU^, 3W2m 

3V2m = (sr + t)U2
m+2sVmUm + 2VmUm, 

3U2m = V* + 2Wm Un + 2rUm Vm + (r2 + s)U2
m. 

9W3m = W3
m + tV3

m + t(r2 + 2rs + t)U3
m + 6tWm Vm Um 

+ 3trWmU2
m + 3trUm V2 + 3t(r2 + s)U2

m Vm 

(2.4) 9V3m = sV3
m + (sr+ t)(r2 + 2s)U3

m+6sWmVmUm+3VmW2
m 

+ 3(sr + t)WmU2
m + 3(t + rs)Um V% + 3(s2 + sr2 + t)U^ Vm 

9U3m = rV% + (r4 + 3r2s +s2 + 2tr)U% + 6rWm Vm Um + 3Um W% 

+ 3Wm V2
m + 3(r2 + s)Wm U2

m + 3(r2 + 2rs + t)U% Vm, 

3RmW-m = W2 + rWm Vm + (r2 + 2s)WmUm - sV2 - (rs + t)Um Vm + (s2- rt)U2 , 

(2.5) 3RmV. m = -Wm Vm - rV2, - r2Um Vm + (rs + t)U% 

3RmU-m = -WmUm + V2+ rUm Vm - sU2
m 

By using methods similar to those of Williams [12], we can show that 
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9RmWn-m 

Wn tUm 

Vn Wm+sUm sVm + (rs + t)Um 

Un Vm + rUm Wm + rVm+(r2+s)Un 

(2.6) 9RmVn~m 

9RmUn 

wm w„ 
vm vn 

Um Un 

= 
wm 

vm 

um 

tVm + nil m 

sVm + (rs + t)Um 

Wm+rVm + (r2 + s)Um 

Wm Wn 

Wm+sUm Vn 

Vn+rUm Un 

, 

(2.7) 

(2.8) 

(2.9) 

where 

Let 

27R r 

Nn 

I Vm 

I v2n 

Wn 

Un 

tUm tVm + rtUm 

sVm + (rs + t)Um 

Vm + rUm Wm+rVm + (r2 + s)Um 

27 

Wn Vn Un 

Wn+m Vn+m Un+m 

Wn+2m Vn+2m Un+2m 

Wn Wn+m Wn+2m 

l/l/n+m Wn+2m Wn+3m 

Wn+2m Wn+3m Wn+4m 

27 
Vn Vn+m Vn+2m 

Vn +m Vn +2m Vn +3m 

Vn+2m Vn+3m Vn+4m 

27 
Un Un+m Un+2m 

Un +m Un +2m Un +3m 

Un+2m Un+3m U n+4m 

RnNn 

-Rnt2Nm 

-Rn(rs + t)Nm 

-RnN2
m. 

Um 

U2m 
= (Vm+rUm)3-rUm(Vm + rUm)2-sU2JVm + rUm)-tU:

n 

m m m n _. nm m nm m nm m R 
CLi + 0.9 + CLq , Um - CLy &2 + &2 0*3 °^3 a 1 ' "n afapag - Rm. 

From (2.1) and (2.7), we have 

(2.10) 3Pm = 3Wm + rVm + (r2 + 2s)Um, 

(2.11) 9Qm = 3Wm+2rVmUm + (2r2 + 4s)UmWm-sV2
m-<sr + 3t)UmVm + (s2-2tr)U2

1 

(2.7) 27Rm = W3
m + tV% + t2U3

m - <3t + rs)Wm Vm Um + rW2
m Vm-sV2

mWm 

+ (2s + r2)Wm Um + (s2 - 2rt)Wm U2 + trV2
m Um - ts Vm U2

m . 
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€m = 

1 a? a2m 

1 a? 4m 

1 a3 a3 

w\AEm = e^,, then 
(2.14) 
and 
(2.15) 
It should be noted that 
(2.16) Em 

and 

27em = -27R2me-m = 8Nm 

36Em - A/1/2 

= P2
md2

m+ 18PmQmRm-4Q3
m- 4P3

m Rm - 27R, 

A = r2s2- J8rst + 4s3-4r3t-27t2. 
If 

- „3 F(x,y) = xd - rx y - sxy - ty , 

we see from (2.14) and (2.5), that 

RmF(Vm + rUm, Um) = F{(tU2
m - rWmUm - Wm Vm)/3, (-WmUm + V2

m + rUm Vm - sU2)/3). 

WWl, I / / , Ui are selected such that M /̂ = 3af I/7 = 3h, Uj = 3c, where a, h, c are integers and a + Pib + p7c is 
a unit of the cubic field generated by adjoining p ; to the rationals, we can obtain an infinitude of integer solu-
tions of the Diophantine equation 

F(x,y) = F(z,w). 
If we define 

then (Bell [1]) 

Zn 8 

1 91 P" 
7 92 92 
1 93 93 

pn = (Zn+2-rZn+1-sZn) + (Zn+1-rZn)p + Znp
2, 

where p = pi, p2, P3. Using this result together with (2.1), we obtain 

(2.17) 3m-7Wnm = YfJmM-T-Wf (Z2jH+2-rZ2j«+1sZvH)l>ltf-,-JVnU'n, 

3m'1vnm = ^7—-mf (z2i+i+1-rz2j+1)wrHv!
nui , 

u 

where the sum is taken over integers i, j > 0 such that 0 < / +j < m. 
Finally, it should be noted that for a fixed value of /7, each of Wn+km, Vn+^m, Un+km can be represented as 

a linear combination of the kth powers of the roots of the equation 

x3 = Pmx2-Qmx + Rm ; 

consequently, we have 
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(2-18> Wn+(k+3)m = Prn^n+(k+2)m ~ ClmWn+(k+1)m + RmWn+km , 

Vn+(k+3)m = Pm ^n+(k+2)m ~ &m Vn+(k+1)m + Rm Vn+km * 

Un+(k+3)m = PmUn+(k+2)m ~ &mUn+(k+1)m + Rm^n+km • 

The identities (2.1), (2.2), (2.6), (2.7), (2.9), (2.17), (2.18) are analogous to Lucas' important identities (7), 
(49), (51), (46), (32) and (33), (49), and (13), respectively. 

3. PRELIMINARY RESULTS 

We will now show how to obtain values forr, s, t, W1t I / ; , U7 in such a way that JV^, Vn, Un are integers for 
any n e N. We require two lemmas. 

Lemma 1. If Wn, Vn, Un are integers for all /?G/ I / ; then P, Q, R are integers and one of the following is 
true. 

(i) 3\(W1f V1fU1)
f 

(ii) 3\W1f3](Uh V1=-rU1 (mod 3), 3\ t, and 3\s 
(iii) 3\W1f3p1f V1^rU1 (mod 3), 3\t and r2+s^Q (mod 3) 
(iy) 3)(W1,3\V1,3)(U1,W1^-U1 (mod 3), 5 = 1 (mod 3), and t = -r (mod 3) 
(v) 3\W1V1UhW1^U1 (mod 3), V1^tU1 (mod 3), 3\s, 3\r, and 3J[t 

Proof. Since W2, V2, U2 are integers, it follows from (2.3) that one of the cases (i), (ii), (iii), (iv) or (v) 
must be true. In each of these cases, we see that 

r\/1 + (r2-f-2s)U7 = 0 (mod 3); 
hence, P is an integer. 

Now, from (2.18) and the fact that VQ = UQ = 0, we have 

V3 = PV2~QV1f 

U3 = PU2-QU1; 

thus, Q.V1 and QU1 are both integers. Since 9Q is an integer, we see that Q is an integer if 3jfI// or3\\J-]. If 
3\ (V'i, U1), then it is clear from (2.11) that Q is an integer. Using the equations 

V4 = PV3-QV2+ RVh U4 = PU3-QU2 + RU1 

and (2.7), we can show that R must also be an integer. 

Lemma 2. If the conditions of (i) of Lemma 1 are true, Q and R are integers. 
If the conditions of (ii) hold, Q and R are integers if and only if 9\ t 
If the conditions of (iii) hold, Q and R are integers if and only if t = r(s- 2r2) (mod 9). 
If the conditions of (iv) hold, Q and R are integers if and only if s = 1 - tr- r2 (mod 9). 
If the conditions of (v) hold, Q and R are integers if and only if s^t - 1 - tr (mod 9). 

Proof. The proof of the first statement of the lemma is clear from Eqs, (2.11) and (2.7). We show how the 
other statements can be proved by demonstrating the truth of the fourth statement. (The proofs of the others 
are similar.) 

We write 
W1 = -U-1 + 3L, V1 = 3K, 

where L /fare integers. Substituting these values for W-j and I// in (2.11), we get 

9Q = 2U2
1[1 -s-tr-r2] (mod 9), 

Hence, Q is an integer if and only if 
s = 1 - tr- r2 (mod 9). 

tIf x,y,z,-~ are rational integers, we write as usual x\y for x divides y, xj(y for x does not divide y, and (x,y,z,'~) 

for the greatest common divisor of x,y,z,-~- We also wri te yn\\x to indicate that yn\x and / J /x . 
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Assuming that Q is an integer and repeating the above method using (2.7), we get 

27R E= [-] + t2 + 2s + r2-s2 + 2rt]U3
1 (mod 27). 

Thus, 
3R = (It + r)/3 -(s- l)/3)((t + r)/3 +(s- 1)/3)U^ (mod 3). 

Since (s - 1)/3 = r(t + r)/3 and 3\rf we see that R is an integer if Q is. 
The answer to the problem of this section is given as 

Theorem 1. Wn, Vn, Un are integers for any n e N if and only if one of the following is true. 

(a) 3\(W1f V1fU-i) 
(b) 3\W1,3)(U1, V1^-rU1 (mod 3), 3\s, 9\ t 
(c) 3\W1f 3l[Ui, V1^rU1 (mod 3), 3lfs, r2 + s = 0 (mod 3), t = r(s- 2r2) (mod 9) 
(d) 3\W1f 3\!//, 3\U1f W1 = Ui (mod 3), s= 1 (mod 3), t = -r (mod 3), s= 1 - tr - r2 (mod 9) 
(e) 3)(W1V1U1,W1^U1 (mod 3), Vj=tUj (mod 3), 3\s, 3\r, 3fo s = t 2 - 7 - f r ( m o d 9 ) . 

Proof. By Lemmas 1 and 2, one of the above conditions is necessary in order for Wn, Vn, Un to be inte-
gers for any n e N. To show sufficiency of the conditions, we note that in each case W2, I/2, U2* ^ 4 R a r e 

integers. The fact that Wn, Vn, Un are integers for any n e/ l / follows by induction on (2.18). 

Corollary. Let/7 e/l/. 
If the conditions of (a) are true, 

Wn = l/^ ^ ^ = 0 (mod 3). 

If the conditions of (b) hold, 

Wn = 0, Vn = -/- / /„ (mod 3). 

If the conditions of (c) hold, 

W„ = ft l/^ = r ^ (mod 3). 

If the conditions of (d) hold, 
Wn = - ^ , !/rt = 0 (mod 3). 

If the conditions of (e) hold, 

Wn = Un, Vn = tUn (mod 3). 
Proof. These results are easily verified for/7 = 2. The results for general n e/V follow by using induction 

on (2.18). 
For the sake of brevity, we shall say that the functions Wn, Vn, Un are given by (a), (b), (c), (d), or (e) if 

W-j, V1, U1, r, s, t obey the conditions of the cases (a), (b), (c), (d), or (e) above. From this point on, we con-
sider only those functions Wn, Vn, Un which are given by one of these cases. 

4. CONGRUENCE PROPERTIES MODULO 3 

Since 3\ (Wn, Vn, Un) for Wn, Vn, Un given by (a), we will confine ourselves here to an investigation of the 
congruence properties (mod 3) of Wn, Vn, Un when they are given by (b), (c), (d) or (e). In each of these cases, 
9\ A and we let H = A/9. From the corollary to Theorem 1, we see that it is sufficient to discuss Un only. 

We define JJL to be the least positive integer such that 

Uj = Uf+kjji (mod 3) 

for all i,k e N. We further define 
B ={X1,X2,-,XlJi)l 

where Uj = UjX; (mod 3). 

Lemma 3. Forl/l/n, Vn, Un given by (b), (c), (d) or (e), juand£are determined from the following results. 
Case (i) 3^Pr. The values of id, R (mod 3),£ are functions of the values of H and Q (mod 3). These values 

(mod 3) are given in Table 1. 
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Table 1 

H 

1 
7 

-7 
-7 

0 
0 

a 
0, 7 

-7 
7 

0,-1 
P 

-P 

M 
2 
2 
4 

4, 8 
6 
3 

R 

0 
P 
P 

P(l + Q) 
P- 7 
P + 7 

B 

{1,(Q+ DP) 
{ I o} 
[1, ft -7, 0} 

{1, (Q- DP, -1, ft -7, -(Q-
{7, 7, ft -7, -7, 0} 

{I-10} 

- DP, 7, 0 } 

Case (ii). 3\P, 3\r 
In this case, [1 = 2, R =PQ(Q - 1) (mod 3), and B= {1, P + PQ.} . 

Case (iii). 3\P 
In this case, Q = -H (mod 3) and the value of R is independent of Q and H. The values of JU and/? are 

given in Table 2. 
Table 2 

H I a 

\ ° 
- 7 
- 7 

7 

0 
7 
7 

- 7 

•" l"l fi I 
- F 
F = 0 
F£0 

0 

6 
4 
8 
2 

{l F,0,F,-1,0} 
{ 1,0,-1,0} 
{1, F, -1,0,-1, -F, 1,0} 

{IF} 

Here 
F = (-Wt+sUtift 
F = (-W1 + rV1 + (tr-3-r2)U1)/3 
F = (-Wt+rVt-sUiift 

and 
F=(-W1-tV1 + (s+2)U1)/3 

Proof. ForM/n, Vn, Un given by (b), put 

Wf = 31, V1 = -rU7+3K, a = s/3, b = rt/9, A1 = L+rK + aU1fA2 = L, A3 = L + aU 1. 

Then it can be shown by substitution into (2.10), (2.11), (2.7), that 

P = A1 + A2 + A3, Q = A-jA2 + A2A3 + A3A 1+b, R = A 1A2A3 + bA 7, 

A2A3 = (A2 + A3)2>-(A2- A3)2 = (A2 + A3)
2-a2 (mod 3). 

Also, \\3)[r,H = a2-b (mod 3) and if 3\r, H = 0 (mod 3). Hence, if 3\r, 

0. = P(A,+AJ- H (mod 3) 
p =\P(Q-H)(Q + H - 1) (mod 3) when 3JfP 
h ~\(A^A,)(H - 1) (mod3) when 3\P, 

U2 = Ui(A%+Aj = UjfPQ+PH) when 3\P. 
\\3\r, 

P = 2aU1 (mod 3) 

Q = P(A2+A,)-a2 (mod 3) 

R \PQ(Q - 1) (mod 3) when 3JfP 
\-(A2+A3) (mod 3) when 3\P 

U2 = ft2+AJUi = P(Q+ 1)U1 when 3lfP . 

The proof of the lemma for Wn, Vn, Un given by (b) follows by using induction on (2.18). 

for Wn, Vn, Un given by (b), 
for Wn, Vn, Un given by (c), 
for Wn, Vn, Un given by (d), 

for Wn, Vn, Un given by (e). 
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For (c), put 

W1 = 3L, Vj = rU1+3K, a = rt/3 - 1, b = r(t - r(s - 2r2))/9, A1 = L + (a+1)U1f 

A2 = L-rK, A3 = L+2rK + aU1. 
Then 

H = a2-b, P = A1+A2 + A3, Q = A1A2 + A2A3 + A3A1+b, 

R = A1A2A3 + bA1, (A2-A3)
2 = a2, A2A3 = (A2 + A3)

2- a2 (mod 3) . 

For (d), put 
W1 = Ut+3L, I / / = 3K, a = rK, b = r(t + sr)/9, A7 = L+rK + Ur(r

2- 1)/3, 

A2 = L+sfsK+Urft -D/3, A3 = L-y/sK + Urfs-Dti. 
Then 

H = (a-P)2- b, P = A1+A2 + A3/ Q=A1A2 + A1A3 + A2A3 + b, 

R = A1A2A3-b(a+A2 + A3)f (A2- A3)
2 = a2, A2A3 = (A2 + A3)

2'-a2 (mod 3). 

For (e), put 
)/l=tUi+3K, W1 = U1+3Lf Ai = L+tK + U1(1+2t2)/3, 

A2 = L +$1K + $1U1r/3, C = L + $2K + $2U/r/3, 

where j3 7, 02 are the zeros of x2 + (t- r)x + 7. Then// = 0, P = A7 + A2 + A3. 

Q = A1A2 + A3A1 + A2A3, R = A1A2A3f (A2-A3)
2 = 0, A2A3 = (A2 + A3)

2 (mod 3). 

The remainder of the proof of this lemma for Wn, Vn, Un given by (c), (d), or (e) can now be obtained in the 
same way as that for Wn, Vn, Un given by (b). 

Corollary. tfn^N,3\Un if and only if \p\n, where \p is the least positive integer value for/7? such that 
3\ Um. From the statement of Lemma 3, it is clear that \jj = \i, ji/2 orno value for 0 exists. 

in the statement of Lemma 3, we have neglected the case for which 3\Pr, 3\d and J l / / . In this case, it can be 
shown that \x does not exist By the definition of Wn, Vn, Un, we exclude this case; hence, we may not have 
values of/; s, t, W1f V1f Uj such that 3\Pr, 3\ F, 27\ A for Wn. Vn, Un given by (b) or (c) or values of r, s, t, 
W1f V1f (//such that 3JfP,3\(F + P),27\ A \oxWn, Vn, Un given by (d). 

We have now found the conditions on r, s, t, Wj, V'7, U7 in order that the functions Wn, Vn, Un satisfy the 
requirements (1) and (3) of Section 1. We give the conditions for (P,Q,R) = 7 ((2) of Section 1) in Section 5. 

5. FURTHER RESTRICTIONS ON r, s, t,Wu V1fUt 

It is not immediately clear how to select/; s, t, W1, I/7, U1 In order that (P,Q,R) = 7. We show how such se-
lections may be made in 

Theorem 2. Let 3G = (2r2 + 6s)V1 + (2r3 + 7rs + 9t)U7. 
1. If Wn. l / „ , Un are given by (a), (P,Q,R)= / if and only if (W1f V1r Uj) = 3 and (P,G,A) = 2a3p, where 

a> 0 only if 2\(s + r)(V7 + Ui) and (3 > 0 only if none of the following is true. 
(i) 3\r and Wr f tV1 + t2U7 = 0 (mod 9) 
(ii) 3\r, s = 1 (mod 3), and Wj + tUj^Q (mod 9) 
(iii) 3\r, 3\s, and W1(W1 + rV1+U1)^{S (mod 27) 
(iv) 3jfrf s = -1 (mod 3), and0lW; . 
2. If Wn, Vn, Un are given by (b), (c), (d), or (e), then (P,Q,R) = 1 if and only if (W1f Vh U7) = 1 and 

(P,G,HJ = 2a3y, where a> 0 only \t2\(s + r)(V1 + Uj) and y> 0 only i f ^ f . 

Proof. We first prove the necessity of the conditions of the theorem. 

If/7 (£ 3) is a prime and /?l (Wh Vh Uj), then it is clear from (2.10), (2.11), and (2.7) that p\(P,Q,R). If 
9\(W1t V1f Uj), then 3\(P,QM Hence, if (P,Q,R)= I (WuV1f U7)\3. 

Now,suppose that/7 (/= 3) is a prime divisor of (PfG,A). Since 
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we have 

Since 

(5.1) 

we see that 

3W1 = -rV1-(r
2 + 2s)U1 (mod/?), 

27Q EEE (r2 + 3s)V2
1 + (2r3 + 7rs+9t)U1V1 + (r4+4sr2 + 6tr + s2)Li^ (mod/?). 

(2r3 + 7rs + 9t)2 - 4(r2 + 3s)(r4 + 4sr2 + 6tr + s2), -3A 

27'4.(r2 + 3s)Q E= 9G2 (mod/7). 

\i p\2(r
2 + 3s), then /7I Q. \ip\fr2 + 3s), then, from (5.\),pI (2r3 + 7rs +9t). As a consequence of these two 

facts, we deduce that/?I (rs + 9t) md p\(3tr - s2); thus, p\ (r4 + 4sr2 + 6tr +s2) and/?lfl. Combining (2.15) 
and (2.16), we get 

272(P2Q2+ 18PQR -4Q3- 4P3R - 27R2) = A/Vf ; 

consequently, \ip\(Q,P,A) and/? ? 3, then p\ R. Thus, if (P,Q,W = I then (P,G,A) =2*3^, ((P,G,H) = 2a31l 
U2\(P,G,A) and (P,Q,R)=1, then 2J{Q. Q is odd if and only if (s + qHV^U-j) is. If 3\(P,G,A) (or3\(P,G,H)) 
and (P,Q.,R) = 7, then 3\(Q.,R). We will show the conditions under which 3y(Q,R) for part 1 of the theorem 
only. The conditions for part 2 are quite easy to obtain from results used in the proof of Lemma 3. 

Since 3\P and 3\A, we have 
rVj/3 = -(r2 + 2s)(J7/3 (mod 3) and r2s2 + s = rt (mod 3). 

We now deal with four cases. 
(i) 3\r. I f j l / - , then J l * and J l f l . Hence 3\(Q,R) if and only if 3\W1/3 + tV-,/3 + t2U1/3 J 
(ii) 3\r,*=\ (mod 3). Here we have 9\ I / ; and tr =-\ (mod 3); t h u s , * 2 - 2tr = 0 (mod 3) and 3\Q. Hence, 

JJYfl,/^ if and only if 3Jf(W1/3 + tUj/3). 
(iii) 3]frr 3\s. We must have 3\t and 3\Q. f7?,£j is not divisible by 3If and only M9](W1(W1/3 + rV 7/3 + U-j/3). 
(iv) 3)(r,$=-\ (mod 3). Once more, we get 3\t Also ( / / = - 1 / 7 (mod 9); hence 310. j j Y / ? , ^ if and only if 

WN^/3. 
We now show the sufficiency of the conditions. Let/7 (£ 3) be a prime such p\(P, (2, R) and /7J7 A . Put 

T = I// -/• rU-j. Since/7l£/ and/7 j 'A , we must h ave /71 /I/ / and 

3W1 

rT2U-i (5.2) 

Also 

hence, 

(5.3) 

\ip\Uj, then/7ll/7 and /? ! ^ . Suppose/?^7;then 

sTUj-W] = 0 (mod/?). 

rT-2sU1 (mod/?) and /?l^7^2/ 

T2(-r2-3s) + U1T(-sr-9t) + U2
1(-s

2 + 3tr) = 0 (mod/?). 

-9t- rs 
-s 

-3s - /^ 
- r 

- 3 f - ry | 3 / T - ^ -9t-rs -3s - r* 

Evaluating the determinants, we have 

TU", 
-3rt-sz 

-t 
0 

-3s - r 
-r 

-9t - rs -3s-
= 0 (mod/?). 

-3ATU'!1 + rA 0 (mod/?) 

and, consequently, T^3~1rUi (mod /?). Putting this result into (5.2) and (5.3), we get r2 +3$ = Q (mod/7) 
Bnti2r3 + 9sr + 27t = 0 (mod/7). By (5.1)/?lA, this is a contradiction; thus p\(Wj, I/7, ^7 / . 

If 3\(P,Q,R) and J^A, then W^, l/^, Un are given by (a) and we discuss two cases. If 3\r, then 3ifs and from 
(2.10), we must have 9\U7. Using these results in (2.11) and (2.7), we see that 0l I/7 and9\W1. If 3][r, we ob-
tain from (2.10) the fact that 

I/7/3 = -r(l + 2s)U7/3 (mod 3). 
Putting this result into (2.11), we deduce 

(-s-s2+tr)(U1/3)2 E= 0 (mod 3). 
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Since 3JfAf 3\U1/3 and 3\ V1/3/ from (2.7), we have 3\Wj/3. 
if/? (£ 3) is a prime andp\(P,Q,R,A), then 

4-27(r2 + 2s)Q = 9G2 (mod/?) 

and/?l£ I fp =2, then 2\(P,G,A) and we have 2\ (s + r)(U / + Vj). 
If J I ^ ^ A J a n d ^ , Vn, Un are given by (a), it follows from (2.10) that 

rV!/3 + (r2 + 2s)U7/3 = 0 (mod 3). 
Hence, 

G = 2r(rV1/3 + (r2 + 2s)U1/3) + 3rsU1/3+9W1/3 + 6sV1/3 = 0 (mod 3) 

and 3\(P,G,A). By the reasoning given above, one of (i), (ii), (iii), or (iv) must be true. If Wn, Vn, Un are given 
by (b), (c), (d), or (e), then by Lemma 3, 3\ H, and we have 

-4-27.(r2 + 2s)Q = 9G2 (mod 27); 

hence, 3\(P,G,H) and 3\F. 
The values of a, j3, 7 in Theorem 2 can be bounded. We give these bounds in 

Lemma 4. \\(P,Q,R)= 7, then a< 3, 0 < 4, and 7 < 6. 

P r o o f . \\8\(P,G,M, then 
-12(r2 + 3s)Q = 9G2 (mod 8 ) . 

Since ^jY/*2-*-^, we have^lC and it follows that-?!/?. 

3W1/3 + rV1/3 + (r2 + 2s)U7/3 = 0 (mod 81) 
and 

3Q = -[(r2 + 3s)(V1/3)2 + (2r3+7rs+9t)(U1/3)(V1/3) + 3(s2-2rt)(U1/3)2] (mod 243). 

If 27\(r2 + 3$), then 9\d \\ 27\(r2 + 3$), we have 3\r, 3\s and (r/3)2 + (s/3) = 0 (mod 3), Since 81\A, we also 
have r/3 = t (mod 3). Since 

-3Q = (7rs + 9t)(U1/3)(V1/3) + (6rt + s2)(U1/3)2 (mod 27) 

and 7rs+9t = 6tr + s2 = Q (mod 27), it follows that9\Q. From the facts that9\Q, 81\A, 27\NV and 

E1 = A(N1/27)2
f 

we see that J I/?. 
I f 7 > 6 , then J 5 I - J A and 

-4»27(r2 + 3s)Q^9G2 (mod 3*) ; 

hence, 35\(r2 + 3s)Q. It is not difficult to show that 9\Q. Since 3\N] and 3 5 lA , we have 310\AN2, and conse-
quently, j l /7. 

6. PROPERTIES OF M^, ! / „ , { / „ 
In the following sections, we will be demonstrating several divisibility properties of the Wn, Vn, Un func-

tions. Most of these results depend upon 

Theorem 3. . \i n e N, (Wn, Vn, Un)\l 

Proof. Suppose p it 3) is a prime such that p\(W2, V2, U2). From (2.10), (2.11), (2.7), it is clear that 
p\P2, p\G2f p\ R. Since P2 = P2 - 2Q and Q2= Q2- 2RPf we havepI(P,CL,R), which is impossible by defini-
tion of Wn. Vn, Un. \i9\(W2, V2, U2), then 3\R, 3\P2, 9\Q2; hence, 3\(P,d,R). The theorem is true for/7 = 7, 
2. 

Suppose n > 2 is the least positive integer such that/?l(Wn, Vn, Un), where/? (£ 3) is a prime. Since P\R, by 
(2.18), it follows that 

/W„_ 7 = flM^, ^ ^ - 7 - QVn-2,PUn-1 = 0</„-2 (mod/?). 

If/?!/*, then /?^0; hence, / ? l ^ _ 2 , I//7-2, ^ - 2 > l which is impossible by the definition of n. If /?!#, then 
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p\(l/l/n-.j, I /V7, Un-ll which is also impossible. This enables us to write 

Wn^ ^P~1QWn-2, V„-1 ^P-1aVn_2, Un-, ^p-1QUn„2 (mod/7), 
where P~ Q=£ 0 (mod p). From (2.2), we see that 

Wn =p-1QWn-1f Vn ^P~1QVn-1f Un ^P'1QUn.7 (mod/?) 

and consequently pI(Wn„1f Vn„i, Un-i), which is impossible. 
Supposes > 2 is the least positive integer such that 9\(Wn, Vn, Un). From (2.2), it is evident that 

3\(Wn+1,Vn+1,Un+1L 

If \p has the same meaning as that assigned to it in the corollary of Lemma 3, we have 1//I/7 and \p\n + 7; that is, 
1// = 1. Since 3\Wn-3 and 3\R, we have 

PWn-t/3) = Q(Wn.2/3) (mod 3) 
and similar results for ! / „ _ / and Un-j. By reasoning similar to that above, we obtain the result that 

3\(Wn^/3, \/n„7/3,Un-i/3), 
which cannot be. 

Corollary. If n e/V, (Un, Vn, R)\3. 

Proof. If/7 ^ 3 ) is aprime and/?!^^, Vn,R), then p\Wn, which contradicts the theorem. \\9\(Un, Vn,R), 
then by (2.7), 81\W% and 9\Wn, which is also a contradiction. 

We have, with the aid of Theorem 3 and Lemma 3, completely characterized all the divisors of (Wn, Vn, Un). 
We will now begin to develop some results concerning Dn = (Vn, Un). It will be seen that the divisibility prop-
erties of Dn are similar to those of Lucas' un (Carmichael's Dn ). In fact, we have analogues of Carmichael's 
theorems I, I I , I I I , IV, VI, X, XII, XII I , XVII (corollary), in Theorem 3 (corollary), Theorem 3, Lemma 3, 
Theorem 4, Theorem 5 (corollary), Theorem 7, Theorem 8, Theorem 8 (corollary), Theorem 7 (corollary), re-
spectively. We also have the analogues of Corollaries I and II of Carmichael's Theorem VIII as a consequence of 
Theorem 5 and a result of Ward [9 ] . 

Theorem 4. If/7, k^N and m\Dn, then m\Dkn. 

Proof. This theorem is true for k= 1. Suppose it is true for k = j. 

Since 
3V(j+1)n = VnWjn + WnVjn+sVjnUn+sVhUjn + (rs + t)UnUjn 

and 
3U(j+1)n = WjnUn + UjnWn + VnVjn+rUjnVn+rUnVjn + (r2+s)UnUjn, 

we have m\D(j+i)m, when 3\m. If 3\m, then 3\Wn and 3\Wjn; hence, 3m\3V(j+1}n, 3m\3U(j+i)n and 
m\D(j+um. The theorem is true by induction. 

Let DQJ be the first term of the sequence 

in which m occurs as a factor. We call co = co (m) the rank of apparition ofn. 

Theorem 5. If n e N and m is a divisor of Dn, then GO (m)\n. 

Proof. Suppose ojh; then n-koo-+j(0 <j <co). From (2.2) 

3Vn = VjWkoj+WjV^ +sVjUk0> +sVkuUj + (rs + t)Uk0,Ujt 

3Un = UjWk0J +WjUk0}+VjVku +rUkcjVj + rUjUk03+(r2 + s)Uk0jUj. 

\i3\m,m\(VjWkLO/ UjWk0j). Sincem\Dk0j, (m, Wkc0) = 1 and mlDj. 
If 3\m, then 3\Wk(j0 and 3\Wn. If \p is the rank of apparition of 3, we know that \p\n and \p\koo; hence, 

\jj\j and 3\(\Njf Vjf Uj). We now have 3m\(VjWk0J, UjWk0j I If 3\\m, then (m/3, Wk0J ) = 7, m/3\(Vjf Uj), 
3\(Vj, Uj) and consequently m I Dj. U3a\\m anda> /, then 3\\l/\/kCo and m\Dj. 



108 PROPERTIES OF SOME FUNCTIONS SIMILAR TO LUCAS FUNCTIONS [APR. 

IfoJjfn , we can f ind / < GO such that m\Dj. This contradicts the definition of co. 

Corollary. \tn,meN, then D(mn) = (Dm, Dn). 

Proof. This result follows from the theorem and a result of Ward [9 ] . 

Corollary. If m,n are integers and (m,n) = 1, co(mn) is the least common multiple of co(m) and oj(n). 

7. THE LAWS OF REPETITION AND APPARITION 

We have defined the rank of apparition of an integer m without having shown whether it exists or, if it does 
exist, what its value is. We give in this section those values of/7? for which co exists and we partially answer the 
question of the value of co for these m values. The Law of Repetition describes how co (pn) (p a prime) may be 
determined once co(p) is known. In order to prove the Law of Repetition, we must first give a few preliminary 
results. 

Lemma 5 Suppose 3\R and 3\Dm; then 3\(Pm, Qm) if and only \f9\D3m. \i3J(Af then 3\(Pm, Qm) if 
and only if 9\Dm. 

Proof. \19\Dk, then 3\Wk and 3\(Pk. Qk). If A = r
2s2+s- tr^Q (mod 3) and 3\(Pm, Qm), then 

r(Vm/3) + (r2 + 2s)(Um/3) = 0 (mod 3) 
and 

-s(Vm/3)2 -sr(Um/3)(Vm/3) + (s2 - 2tr)(Um/3)2 s= 0 (mod 3 ) . 

If 3\r, then 3\s; hence, \i3\Um/3, 9\Dm. If 3\r, then (Vm/3) = -r(r2' + 2s)Um/3 (mod 3); thus, 

-A(Um/3)2 = 0 (mod 3) 
and ̂ IZ?™. 

If 9\D3m, we have 3\P3m and J lQj A n . Now 

P3m = Pm-3amPm+3Rm, 

Q3m = Qm~ 3RmPm dm + 3Rm ; 

consequently,3\(Pm, Qm). \i3\(Pm, Qm), then since 

VSm/3 = Pm V2m/3 - Qm Vm/3 = 0 (mod 3) 
and 

U3m/3 = PmU2m/3-QmUm/3 = 0 (mod 3), 
we have^lZ?^. 

Lemma 6. Suppose 5^/?, 3\Dm, and 3\A. \^3\Pmf9\D2m if ar|d only if one of the following is true. 
(i) 3\s, 3\ t, 3\rf Wm = Um4U (mod 9), and 9\ Vm . 
(ii) $ = 1 (mod 3), f = - r ^ 0 (mod 3), Wm = -Um£Q (mod 9) and Vm=rUm (mod 9). 

(iii) s = - 1 (mod 3), 3\ tf 3\r, and Wm = -rVm + Um £0 (mod 9). 
Proof Since 3J/Pm and 3\ A , it is clear that 3\r. 

We show the necessity of one of (i), (ii), or (iii). If 9\D2m, then 

(sr + t)(Um/3)2 + 2s(Vm/3)(Um/3) + 2(Vm/3)(Wm/3) = 0 (mod 3) 
and 

(Vm/3)2 + 2(Wm/3)(Um/3) + 2r(Um/3)(Vm/3) + (r2 + s)(Um/3) = 0 (mod 3). 

\\9\Um, then 9\Vm and 3\Pm, which is impossible. If 9\Vm, then 5 l fo + t) and (r2 + s)Um = Wm (mod 9). 
Now since 5JY* * U we have 5b - 7 or 5 k If 5lfr - 1), then 5l fr2 + 2s) and 5l/>m, If 3\s, then 5lf 
and M ^ = Um ^ 0 (mod 9). 

If 9]fUm and SfV m , then 

Wm-(sr+t)Vm+sUm = 0 (mod 9) 
Wm+rVm-(1 + r2 + s)Um = 0 (mod 9) 
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and 
r(s + 1)2Vm = -(s + 1)Um (mod 9). 

If 3\s, rVm = -Um (mod 9) and 3\Pm. If s = 1 (mod 3), then t = -r (mod 3), rVm s Um ^ 0 (mod 9) 
and Wm =-Um (mod 9). If $==-1 (mod 3), then 3\t, andWm=-rVm + Um (mod 9). 

It is clear that any one of the conditions (i), (ii), or (iii) is sufficient tor 9\D2m • 

Theorem 6. If 3}% \p is the rank of apparition of 3, mol9)(D$, then the rank of apparition of 9 is o\p, 
where the value of a is given below. 

I. 3]fA. 
In this case, Wn, ]/n, Un are given by (a) and the value of a is a function of the values (modulo 3) of N i/27, 

A, P, Q. The values of o are given in Table 3. 
Table 3 

N1/27 

0 
±1 
±1 
±1 
±1 

A 

±1 
-7 
- 7 
-7 

P 
P 
±1 
±1 
0 
P 

a 
a 

±1 
0 

a 
a 

o 

2 
4 
8 
8 

13 

II. J l A . 
Here o= 2 if 3JfP$ and one of the following is true. 

(i) 3\s, 3\tf 3\r, W$ = U^j £ 0 (mod 9) and 9\ Vty; 

(ii) s = l (mod 3), t = -r£0 (mod 3), Wty = - £ / ^ ^ 0 (mod 9), and V^^rU^ (mod 9); 

(iii) S H E - 1 (mod 2), 3\t,3](r, and !/l/$ =-rV$ +Uxp £ 0 (mod 9). 

o = 3 if 3\Pxjj. 
o = 6 if 3)(P$ and none of (i), (ii), (iii) is true. 

Proof, Since 3\D$, we have 27\N$ ; hence 

E^j = A(N^/27)2. 
\\3\A, 

P\IJR\IJ = QxjjfQipP^- V (mod 3). 

If j l / ^ t h e n j l f l , / , and 91(1/3$, U3xJj), If 3 j ^ , then 

Ry\t = P$CL$(Q.$- V (mod 3); 
thus, Q^ = - 1 (mod 3) and R$ = -P$ (mod 3). Since 

P2\jj = p l -2Q$ ^0 and Q2]jj = d \ - 2R$P$ = 0 (mod 3), 
it follows from Lemma 5 that 91%^ and 9\D3$. From Lemma 6, we see that#lz?2i// if and only if one of (i), 
(ii) or (iii) is true. 

I f J^A and 8l\N1t then 3\EU3\(P2, Q2) and o=2. 
If A = - 1 (mod3)and#7l/l/7, then 

/V? = P2Q2-Q+ 7 (mod 3). 

Using the formulas 
P2k = P2 ~ 2Qk and Q2k = Q2

k - 2PkRk, 

we see that if 3\P, then Q = \ (mod 3) and P2 = Q2^ 1 (mod 3), £4 =/>4 = - 1 (mod 3), Q8 = Ps = 0 (mod 3); 
consequently, a= 8. The remaining results for this case are proved in the same way. 

If A = 1 (mod 3) and ^JTI / / , then 
PR = P2d2-d- 1 (mod 3). 
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Using the formulas 
Pn+3 = PPn+2-QPn+l+RPn 

Qn+3 = QQn+2-PRQn+1 + R2CLn, 

we see that if 3\P, then Q = - 1 (mod 3) and P13 = Q13 ssiMmod 3). If 3\Pr then R' =-P(Q2 - Q - 1) 

and/7
/ :?EE Q13 = 0 (mod 3). 

Theorem 7. (Law of Repetition). Let p be a prime. If, for X > 0, p x ? 3, 2 and p X\\Dm, then 

pa+K\\DmVpa, where (v,p) = I 

mVp& 

3a+1\D ^ / and 9][DmVl if T\V. 

If px = 2 and v is odd,/?"*rl D <m6 4\DmV. If/?A = 3 and 3\R, then 

Here 
r = o/(m/^Jf o), 

where i//, a have the meanings assigned to them in Theorem 6. If 3\R, then 3\\Dn for any n e/1/. 

Proof. Since/7 is a divisor oip!/[i!j!(p - i-j)!] when i,j^ 0,p, we have (from (2.17)) 

3p~1Vmp =pW%;1Vm ( m o d / * 2 ) 

5 p " 7 ^ p ^pW^1Um (modpx+2) 

if Z?^^ or if/7 - ^ and X > 1. if/? M thenp\Wn]hence/?^ ; I IDm p. By induct ionp^l lZ? a. If 
/77p 

/ + a + / | 0 . „ - t h e n PX+a+1\(D a,D a+1) = D a , ' wjUp » mp jU mp mp 

which is impossible. If/7 = 2 and X = 7, ̂ 1/2/77 = ^ 2 m = 0 (mocS 4);hence, 2 |Z? a a n d ^ Z ? ^ , 

If JxIIZ7m andX> 1, then j l M ^ , and 3X > \ + 4, 2\ + 2 > \ + 4. Using the triplication formulas (2.4), we have 

3x+3\9V3m and 3x+3\9U3m 

ox3x+1\D3m. Also 
W3m = 3VmWm (moo\3x+4) 

9U3m =3UmW2
m (moo\3x+4) . 

Since 9\Wm, 

3x+2\D3m and 3X+1\\D3m. 

\i3\\Dm, then \jj\m and^lz?^ if and only if cn//l/7. Since o\p\mr, we have9\DmT and 30L+1\D a_i. \\r\v, 
then en// jfy/77 and 9\DVm . m 

U3\R and #!/?„, then 8l\W3ot9\Wn, which is impossible. 
The Law of Apparition gives those primes for which the rank of apparition exists and also gives us some in-

formation concerning the value of the rank of apparition. We first define an auxiliary function yn. 

If p is a prime such that/7^/1/7/?. w e riefine the function yn to be the Lucas function un of (1.1), where 
a-j + a2=g (modp),a7a2^h3 (mod/?), and 

h = r2 + 3s, g = 2r3 + 9rs + 271 

Theorem 8. (Law of Apparition). If/? is a prime such that/7^/?, then OJ, the rank of apparition of/7, ex-
ists. If/? =3, then co = \p. Supposep\3R; then co(p)\<&(p), where the value of # is given below. 

We let/? =q (mod 3), where \q\ = 1. 
\ip)(&N1md(&\p) = -1, then fa- 7)ifo) and <5>(p)=p2- I 

IfpfA/l/f/? and (A\p) = +1, then $>(p)=p - 7, w h e n / ^ - ^ / j ^ O (modp);&(p) = p2 + p + 1, when 
/fo-<7//?^0(modp). 

l f /7/A/ l / / , fAl/?J=+1fand/?to, then/7 = 1 (mod 3) and <&(p)=p - 1,when (g\p)3= 1;®(p) = p2 + p + 1, 
when (g\p)3^ 1. 
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I f^Aand/? ! / ! / ; , then^(p) = p - 1. 
If/? = 2 and/? I A , then $(p) = 4. 
Up f^ZplA and/?j7l/7/ then/?lco and $(p) = pip - 11 
\\p£2,p\A and p\N1f then $(p) = p, when/?!(?; <£//7J = p - 1, whence?. 

Proof. These results may be deduced without much difficulty from (2.15) and results of Engstrom [5 ] , 
Ward [8 ] , and Cailler [2 ] . (See also Duparc [4].) 

Corollary. If we define $ (pn) = pn'1^ (p) for/7 ?3,$ (32) = o\p, <$>(3n) = 3n~2<$>(32), and $ (mn) to 
be the least common multiple of $ (m) and $(n), when (m,n) = 1, then oj(m)\<§(m). 

If/7 is of the form 3k + 1 andp^A/V7R, we can sharpen some of the results in the Law of Apparition. 

Theorem 9. Let/7 {= 1 (mod 3)) be a prime such th at p\A N1R. If (A\p) = -1, co\(p2 - 1)/3 if and 
only \UR\p>3= 1. If (&\p) = +l mdy(p„q}/3£§ (modp), then coif/?2 +p + / ; /J if and only if (R\p)3 = I. If 
(A\p) = +1andy(p^g)/3 = Q (mod/?), col (p - 1)/3 only if (R\p)3= I 

Proof. If (A\p) = -1, then (E1\p) = - 7 and the polynomialx3 - Px2 + Qx - R factors modulo/? into the 
product of a linear and irreducible quadratic factor. Let K = GF(p ) be the splitting field for this polynomial 
modulo/7 and let the roots of 

(7.1) x3 -Px2 - Qx- R = 0 

be 9, (p, \jj in K. Then in K 

0P = 6, x = <t>p, Xp = <P, R = ^0X = 6(^+1. 

lJR(p-D/3 = 1 (mocjp) /Wehave 
(7.2) e(P-l)/3^-1)/3 = 1 a n d Q(p2-1)/3 = ^-D/3 = ^(p2-1)/3 

Sincep]fAt it follows X\\^p\D(p2_1)/3. If R(p~1)/3 £ 1 (mod 3), we cannot have (7.2). Sincep)(AN1f\\ is clear 
^tp\D(p2_1)/3. 

\UA\p) = +1 dx\&p\y(p-q)/3, the polynomial* - rx - sx - tis irreducible modulo/?;hence, the polyno-1 

mial x3- Px2 + Qx - R is irreducible modulo/?. If K= GF(p3) is the splitting field of this polynomial (modu-
lo/?^ and 9, 0, x are the roots of (7.1) in K, then 

ep = 0, ep
2 = x , d

p3 = 9, R = e1+p+p\ 

\\Rip"1)/3^\ (mod/?), 
d(p

3-1)/3 = j g n d Qp(p2+p+1)/3 = Qp2(p2+p+1)/3 = Q(p2+p+D/3; 

hencep\D(p2+p+1)/3. If R(p~1)/3 ^ (mod/?), then p\D(pHp+1)/3. 

\i(A\p) = +1 andp\y(p-q)/3, the polynomial x3- Px + Qx - R splits modulop into the product of three 
linear factors. It is not difficult to show that if p\D(p-i)/3, then R*p~''/3' = 1 (mod/?). 

We have not discussed the functions 

Bn = (Wn, Vn) and Cn = (Wn, Un) 

which are somewhat analogous in their divisibility properties to Lucas' Vn or Carmichael's Sn. The functions 
Bn and Cn behave in a rather complicated fashion and in a further paper results concerning these functions will 
be presented together with other results on the Wn, Vn, Un functions. 
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PHI AGAIN: A RELATIONSHIP BETWEEN THE GOLDEN RATIO AND 
THE LIMIT OF A RATIO OF MODI FIED BESSEL FUNCTIONS 

HARVEY J. HINDIN 
State University of New York, Empire State College-Stony Brook University, Stony Brook, New York 11790 

In his study of infinite continued fractions whose partial quotients form a general arithmetic progression, 
D. H. Lehmer derived a formula for their evaluation in terms of modified Bessel Functions [1 ] . We have 

(1) F(a,b) = a0+ — + — +- = fao, ah a2, -J, 
a1 a2 

where an = an + b. It was shown that 

(2) F(a,b) = !f^%l , 

where a = b/a and la is the modified Bessel function 

(3) '*<*> - raj^' ^Tl^W^TJ) • 
m=0 

Using (1) and (2) with ca= 2/a and b = c/2, we have 
(4) F(a,b) = lb, a + b,2a + b, - 7 = ls£l!°2± . 

luica) 
As a-> °° (a -* 0), in the limit (Theorem 5 of [1 ] ) , 

(5) Mm % - 7 - ^ = F(0,b) = [b, b, b, . » ; . 

But, for b = 1, (c = 2), F(0,1) is the positive root of the quadratic equation 

(6) 7 + I = x 
x 

which is represented by the infinite continued fraction expansion [ 1 , 1, 1, • • • ] . 
[Continued on p. 152.] 


