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SUMS OF PRODUCTS INVOLVING FIBONACCI SEQUENCES
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Definition. {H,} is Fibonacci if Hy = Hp-7 + Hpp, n > 1. Every Fibonacci sequence { #,,} can be
written as H,, = Aa” + BB", where a,( are the roots of xZ — x — 7= 0, Thus

Theorem.
n

Z .9,'//‘/,‘/(/ =0
ij=0

for any two Fibonacci sequences if and only if
n
Plzw) = 3 ajz'w’
i,j=0
vanishes on {(a, a), (a, B), (8, a), (8, B)}.
Example. (Berzsenyi [1]): If n is even, prove that

n
Z HiKk+om+1 = Hmen+1Km+n+1— Hm+7Km+1 +HoKom+1 .
k=0
The corresponding P(z,w) is easily seen to satisfy the hypothesis of the thearem (using af=-1, a> - a- 1=0).
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