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H-276 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, Califoriia.

Show that the sequence of Bell Numbers, {3,-},20, is invariant under repeated differencing.

n

By =1, Burt = 3 (1) Be (> 0).
k=0

H-277 Proposed by L. Taylor, Brentwood, New York.

If p =+1 (mod 10) is prime and x = 5 is of even order (mod p), prove thatx — 3, x =2, x — 1, x, x + 1
and x + 2 are quadratic nonresidues of p if and only if p =39 (mod 40).

SOLUTIONS
APLAYER REP
H-261 Proposed by A. J. W. Hilton, University of Reading, Reading, England.

Itis known that, given k a positive integer, each positive integer » has a unique representation in the form
= (%R, -1 4 ... ("’r)
g <k)+<k—7>+ el o
where t = t(n,k), a; = a;(n,k), (i =t, -, k), t > 1 and, if k > t, aj, > a_; > -+ > a;. Call such a representation

the k-binomial representation of n.
Show that, if k> 2 n=r+s, where r> 7, s > 7 and if the k-binomial representations of r and s are

O e R ) P Y P P )
then

aj k-1 ar by Dl b Ch Cl-1 Cy
(k— 7)+(k—2) *'“+(r— 7) <(k— 7)+<k—2) * "'*(b— 7)+<k— 7>+(k—2>+"'+<v— 1)-
Solution by the Proposer.
Define atotal order <, on the collection of all -sized sets of positive integers as follows: |f A B are two dis-
tinct sets of & positive integers write A < £ if
max{x :x € A/B} < max{x :xcB/A} .

Let S (r) denote the collection of tHe first  sets under <, and IetS;;(s) denote the collection of the firsts
sets under < which do not contain any of {1, -, r}. If Aisany collection of n k-sized sets of positive inte-
gers let
AA={B:1B|=k-1 and B c A forsome Aec A} .
n
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The Kruskal-Katona theorem states that [AA| > |AS, (n)]. Thus

|ASk ()] < |A(SK(r) U S70s))]
But

sl = (oo,

and
|A(Splr) v Sils) )
b bi,.. b c Ch- c
= \ASLI)|+ |ASL(5)| = (k—k7>*(kf§)*"'+(ul'7)+ (k_k,)+(k55)+...+(vg ,>.
and the required inequality now follows.
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MODERN MOD
H-262 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Show that Lp2 =1 (mod p?) if and only if Lp =1(modp?).

Solution by the Proposer.

Put
L, =a"+8" a+B =1 aB = —1.
Then
n-1
1= (a+p)" = L+ Y (7)akgrE.
k=1
In particular
p-1
Ly =1- 3 (§)atp?
k=1
and
P o kot
Lp2 = 1~ (i)aap .
k=1
Since
(£)=2(5=1) (371 = 0" modp),
r

it follows that
Ly =1 (mod p?)
if and only if

p-1 k-1
> (—"—7/)(——— akﬁp’k = 0 (modp).
k=1

In the next place

([;e)zl](modp") (o) k)

and
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(}Ij;): l/%(ppl:__ll) = (-1)k1 % (mod p2).

Thus £,2 =1 (mod p?)ifand only if

p-1 k-1 2
> (— 7;( aP*EP Pk = 0 (mod p).
k=1

Since
p-1 k-1 P p-1 k-1
> 17 kgpk ) > (1) opkgp™Pk (mod p),
k k
k=1 k=1
it follows that L2 = 1 (modp) if and only if
p-1 k-1
S BT gkgpk = g (mod p).
k=1 k

Therefore
Lp2 = 1 (mod p?) = Ly, =1 (modp?).
REMARK: More generally, if kK > 2, we have

L p =1 (modp?) = L, =1 (modp?).
p

LUCAS THE SQUARE ISNOW MOD!
H-263 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas.
Prove that Lgmﬂ =4 (mod L,i ) foreverynm=1,23, .

Solution by the Proposer.
Clearly,
L(2k+])m - (aﬂ’l)2k+1 ¥ (Bm}2k+1

is divisible by L,,, =a™ + 8™, where

R LN/ B=7;£
2 7 2 )

Consequently, if n is odd, say 2k + 7, then upon using formulae (I;5) and (L;¢) of Hoggatt's Fibonacci and
Lucas Numbers,
Lowm = Lim =2(=1)"" = L(22k+1)m = 2(=1)"

and, depending upon the parity of m, either L 5,,,,, + 2 or L3,,,,, — 2 is equal to L(22k+1)m' Hence the product
(Lo + 2L oy —2) = L3, —4isdivisible by L2 .
If n is even, say n = 2k, we proceed by induction on k. Fork =17,

Lopm = Lam = LZZW_Z = (LZ _2{_7}”1)2_2 = L:;—4(—7}mL2 +2,

m m

hence, L 7,,,, — 2 and, therefore, [.5””7 — 4 isdivisible by Lfl. Assume now that the desired result holds for
all even integers less than n = 2k. Then
2
Loym = Lgpm = Lg]em -2,
and hence

Loym—2 = L221gm -4.
This latter expression is divisible by L,i either by the induction hypothesis or by the proof for odd n, thus
(L2m * 2)L2,m — 2) must also be divisible by L 2 This completes the inductive step.

m:*

Also solved by G. Lord, D. Beverage, F. Higgins, and G. Wulczyn.
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AN OLDIE!

H-256 Proposed by E. Karst, Tucson, Arizona.

Find all solutions of
(i) x+ytz =2 _q
and
(ii) xwydagd = 20ty
simultaneously forn < b, given that
(a) x, y, z are positive rationals
(b) 22m*+1— 1, 26m*+1 _ 1 are integers
(c) n=log,~/t, where tis a positive integer.
Solution by the Proposer.

From this journal (Dec., 1972, p. 634; April, 1973, p. 188) we have the following

n, X+y+z=22”+1—7, x3+y3+z3:26"+1—7:

1. 1#1+5=7=2"_7] 1P+1+5% =127 =271
2. 1+11+19=31=2°-1 1P+117+19% = 8191 = 203 ¢
3. 1+55+71=127=27-71 1% +55% +71° = 524287 = 270 — 1
4, 19+29+79 = 127 = 27— 1 19% +29° + 797 = 524287 = 210 _ 1
5. 1+239+271=511=2"-1 17 +239° + 2717 = 33554431 = 2%° — 1 .

Through the courtesy of Hans Riesel, Stockholm, we have also:

n = log,/34, xy,z = 13/2, 19, 83/2

n = log,/46, xy,z = 11,47/2, 113/2
log,\/76, xy,z = 26,31,94
n = log,/79, xy,z =29,121/4,391/4.

n

il

n
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