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H-276 Proposed by V. E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Show that the sequence of Bell Numbers, {BJJ^Q, IS invariant under repeated differencing. 
n 

B0 = I Bn+1 - J2 il)Bk <" > 0). 
k=0 

H-277 Proposed by L. Taylor, Brentwood, New York. 

Up = +1 (mod 10) is prime and x = V5 is of even order (mod/7), prove that* - 3, x - 2, x - 1, x, x + 7 
and x + 2 are quadratic nonresidues ofp if and only if/? = 39 (mod 40). 

SOLUTIONS 
A PLAYER REP 

H-261 Proposed by A. J. W. Hilton, University of Reading, Reading, England. 

It is known that, given k a positive integer, each positive integer /? has a unique representation in the form 

" = (\kHfr})+•••<"!)> 
where t = t(n,k), 3/ = a[(n,k), (i = t, •-, k), t> 1 and, if k > t, ay, > ay,-i > — > at. Call such a representation 
th e k-bin om ial rep re sen ta tion 0 f n. 

Show that, if k> 2, n = r + s, where r > 1, s> / and if the /r-binomia! representations of rand s are 

'-ftW£n*--('"). -ftK'tj)--(v) 
then 

Solution by the Proposer. 

Define a total order <s on the collection of all /r-sized sets of positive integers as follows: If A,B are two dis-
tinct sets of k positive integers write A <s B if 

max {x :X^A/B) < max{x : x ^B/A] . 

Let Sk(r) denote the collection of trie first r sets under <s, and letSj^frJ denote the collection of the firsts 
sets under <s which do not contain any of {1 , •••, r). if A is any collection of/? /r-sized sets of positive inte-
gers let 

AA= {B :\B\ = k- 1 and B c A for some A e A } . 
371 



372 ADVANCED PROBLEMS AND SOLUTIONS [DEC. 

The Kruskai-Katona theorem states that [A A | > \AS^ (n) | . Thus 

\ASk(n)\ < \A(Sk(r)u S\(s))\ . 
But 

and 
\A(Sk(r) u S'k(s))\ 

and the required inequality now follows. 
REFERENCES 

G.O.H. Katona/'A Theorem of Finite Sets, Theory of Graphs," Proc. of Colloquium, Tihany, Hungary (1966), 
pp. 187-207. 
J. B. Kruskal, "The Number of Simplices in a Complex,"Mathematical Optimization Techniques, University 
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MODERN MOD 

H-262 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that L 2 = 1 (mod/?2) if and only if Lp = 1 (mod/72). 

Solution by the Proposer. 

Put 
Ln = an + $n, a + (3= 1, a$= -1. 

Then 
n-l 

1 = (a + P)n = Ln+Y, (n
k)

akPn~k. 

In particular 

h'>-li(l)akep-h 

k=l 
and 

k=i 

Since 

r 
it follows that 

Lp = 1 (mod/?2) 
if and only if 

P'1 , iik-1 , i 
y til— akpp-k s 0 ( m o d j 
k=i k 

In the next place 

{ k ) = 0 (mod/?2) (p\ k) 

and 
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*£(;;_-/) W - / ^ £ (mod,-). 
Thus Lp2 = 1 (mod p2) if and only if 

£ t ^ — aPk&pKpk - 0 (mod/7). 

Since 

L — — aPP ) ^E ~k— a?kpP-Pk (mod/;), 
k=i / k=i 

it follows that Z.p2 = 1 (mod/?) if and only if 

T t ^ — akpP-k - 0 (mod/7). 

Therefore 
Lp2 = 1 (mod/?2) -<=•• Z.p = 1 (mod/?2). 

REMARK: More generally, if k > 2, we have 

L k = 1 (mod/72) <=> Lv = 1 (mod/?2). 

LUCAS THE SQUARE IS WOW MOD! 

H-263 Proposed by G. Berzsenyi, Lamar University, Beaumont, Texas. 

Prove that Z.fmw = 4 (mod Z.^) for every n,m = 1,2, 3, - . 

Solution by the Proposer. 
Clearly, 

/ _ /„m\2k+l , /om\2k+l 
L(2k+l)m ~ (CL ) +(P ) 

is divisible by Lm = am +$m, where _ _ 
a = LtslL o = 1-y/5 

2 , P 2 -
Consequently, if n is odd, say 2k + 1, then upon using formulae (1^5) and ( l ^ ) of Hoggatt's Fibonacci and 
Lucas Numbers, 

L2nm = Lnm~ 2(~1)nm = L(2k+l)m~^~^ 

and, depending upon the parity of /??, either L2nm + 2 or L2nm - 2 is equal to L,2k+i)m' Hence the product 
(L2nm+2)(L2nm-2) = ^ i m - 4 i s d i v i s i b l e b V ^ m -

If n is even, say n = 2k, we proceed by induction on k. For k = 1, 

L2nm = L4m = L2
2m-2 = (Li-2(-lD2-2 = L4

m-4(-1)m L2
m+2, 

hence, L2nm - 2 and, therefore, i\nm - 4 is divisible by L2
r Assume now that the desired result holds for 

all even integers less than n = 2k. Then 

and hence 

2 
l-2nm = l-4km = ^2km~2' 

L-2nm ~2 ~ L2km ~4 * 
This latter expression is divisible by L2

n either by the induction hypothesis or by the proof for odd/?, thus 
(l-2nm + 2)(l-2nm ~ 2) must also be divisible by L2

%. This completes the inductive step. 

Also solved by G. Lord, D. Beverage, F. Higgins, and G. Wulczyn. 
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AN OLDSE! 
H-256 Proposed by E. Karst, Tucson, Arizona. 

Find all solutions of 
(i) x+y+z = 22n+1- 1, 
and 
(ii) x3 +y3 +z3 = 26n+1 - 1, 
simultaneously for A? < 5, given that 
(a) x, y, z are positive rationals 
(b) 22n+1 - I 26n+1 - 1 are integers 
(c) n = log2\/f / where ns a positive integer. 

Solution by the Proposer. 

From this journal (Dec, 1972, p. 634; April, 1973, p. 188) we have the following 

n, x+y+z = 22n+1 - 1, x3 +y3+z3 = 26n+1 - 1: 

1. 1+1 + 5 = 7 = 23 - 1 13' + 13+53 = 127 = 2r*'-/ 

2. 1+ 11+ 19 = 31 = 25 - 1 13 + 113 + 193 = 8191 = 213 - 1 

3. 1 + 55+71 = 127 = 27 - 1 I3 + 553 + 713 = 524237 = 219 - 7 

4. 19+29 + 79 = 127 = 27 - 1 193 +293 + 793 = 524287 = 219- 1 

5. 1+239 + 271 = 511 = 29- 1 13 +2393 +2713 = 33554431 = 225 - / 

Through the courtesy of Hans Riesel, Stockholm, we have also: 

n = log2 N/34", x,y,z = 13/2, 19, 83/2 

n = I og2 >/*£", x,y,z = 11,47/2, 113/2 

n = \oq2y/76, *,YJ = 26,31,94 

n = \0QzJ79, x,y,z = 29, 121/4,391/4. 

******* 


