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IWTRODUCTIOW 

Perfect, amicable and sociable numbers are fixed points of the arithemetic function L and its iterates, 

L (n) = a(n) - n, 

where o is the sum of divisor's function. Recently there have been investigations into functions differing from 
L by 1; i.e., functions L+, Z.,, defined by L + (n)= L(n)± 1. Jerrard and Temperley [1] studied the existence of 
fixed points of L+ and /._. Lai and Forbes [2] conducted a computer search for fixed points of (LJ . For 
earlier references to /._, see the bibliography in [2 ] . 

We consider the analogous situation using o*, the sum of unitary divisors function. Let Z.J, Lt, be arithmetic 
functions defined by 

L*+(n) = o*(n)-n±1. 

In § 1, we prove, using parity arguments, that L* has no fixed points. 
Fixed points of iterates of L* arise in sets where the number of elements in the set is equal to the power of/ .* 

in question. In each such set there is at least one natural number n such that L*(n) > n. In § 2, we consider 
conditions n mustsatisfy to enjoy the inequality and how the inequality acts under multiplication. In particular 
if n is even, it is divisible by at least three primes; if odd, by five. If /? enjoys the inequality, any multiply by a 
relatively prime factor does so. There is a bound on the highest power of n that satisfies the inequality. Further 
if n does not enjoy the inequality, there are bounds on the prime powers multiplying n which will yield the 
inequality. 

In § 3, we describe a computer search for fixed points of iterates of L*. In the range 0 < n < 110,000, we 
found no sets of fixed points. 

In § 4, we summarize theory and a computer search for L+. Again, by a parity argument, we prove there are 
only two fixed points, 1, 2, for L*. The computer search, 0 < n < 100,000, found no fixed points of iterates 
o f£*„ 

1. THE FUWCTiOW L* 

Let Z be the integers and N_ the natural numbers. The arithmetic function o*: N_-+Z_ is the sum of unitary 
divisors function. For/? = E[/?°> 

(1) o*(n) = Ii(1+pa). 

Define new arithmetic functions L*r L*, L+, by 

(2) L*(n) = o*(n)-n; 

(3) L*(n) = L*(n)- 1; 

(4) L*(n) = L*(n)+1. 

We are interested in the fixed points of /.*, / .* , and their iterates. For/.*, we call these fixed points reduced 
unitary perfect and reduced unitary amicable and sociable numbers. For /.*, augmented unitary perfect, ami-
cable and sociable numbers. The names are suggested by [2] . We consider L* in detail. 

Note that L*(1) = - 1 and L*(2) = 0. 

Lemma 1. For/7 G/I/, L*(n) = Oli, and only i f ,n= pa,p a prime,/? >2,a> 1. 
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Proof. Un=pa, L*(n) = o*(n)-(1 + 'n) = (1 + n)- (1 + n) = 0, 
Wn¥=pa, n= pamf p a prime, a> 1;(p,m)= 1,m> 1, Then L*(n) = o*(n)- (1 + n). 
But a*(n) = a*(pOL)o*(m) 

> (1+pa)(1+m) = 1+pa+m+pam 
L*(n) > pa + m>0. 

Lemma 2. For^e / I / , L*(n) has the same parity as/? if, and only if,/7 = 2a, a> Q. 

Proof. \in = 2° = 1; L*(1) = - 1. 
\in=2a> 7; L*(2a) = 0by Lemma 1. 
If n = Hpa, all p odd primes: 
L:(n)=mi + p0i)-(1 + n). 
Both terms on the right are even, so L*(n) is even. 
If n = 2l3Upa, all/7 odd primes: 
L*(n) = (1 + 2P)U(1 +pa)~ (1 +n). The terms on the right are of opposite parity; and L*(n) 
is odd. 

Theorem A. L* has no fixed points. 

Proof, By Lemma 2, need only consider cases where parity of n and Lt(n) are the same. By Lemma 1, 
in these cases L2(n) < n. 

2. THE INEQUALITY L*(n) > n 

If (LI)k(n) = n,k>2, then the images L*(n), (LI) 2(n), - , (L*)^1 are also fixed points of (L*)\ Thus 
fixed points of (L*) , k> 2, arise in sets of k distinct points. In each set of fixed points, there is at least one 
integerm such that L*(m) > m. The following propositions deal with the behavior of this inequality. 

Proposition 3. \\k = nm, (n,m)= 1, then L*(k) > L*(n)L*(m) + nL2(m) +mL*(n). 

Proof. L*fk) = o*(k) - (1 + k) = o*(n)o*(m)-(1+ mn) 

= fL*(n) + (1 +n)][L:(m) + (1 + m)] - (1 + mn) 

= L*(n)L*(m) + (1+n)L*(m) + (1 + m) + (1+m) 

> L*(n)+m +n 

> L*(n)L*(m) + nL*(m) + mL*(n). 

Corollary 4. If k = nm, (n,m) = 7, then 
Ll(k) < L*(m)L:(n} + (l +m)L*(n) + (1 +n)L*(m) + (l +m)(l +n). 

Fork = 210 = 2-3-5-7, \z\m=6,n=35. 
The inequality of the proposition is: 

365 = L*(210) > L*(6)L*(35) + 6L?(35) + 35L*(6) = 5-12 + 5-35+ 12-6 = 307. 

The corollary inequality, with these numbers is: 
365 < 5-12 + 5-35+ 12-6 = 307. 

Relative primeness is necessary in the proposition. For k =90, m = 6, n = 15, the required inequality is 

80 > 5-8 + 6-8+ 15-5 = 163 
which is false. 

Proposition 5. Let/77 = pan, (p,n) = 1. If L*(n) > n, then L*(m) > m. 

Proof. L*(n) > n => o*(n)- (1 +n) > n => o*(n)-n > n 

L*(m) = o*(pan)-(1+pan) = (1+pa)o*M- 1 - pan 
= o*(n)-(1 + n)+pa[o*(n)-n] +n = L*(n) +pa[o*(n) - n] + n 
> pan + 2n > m. 
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If m = pan, (p,n) = p, the result does not necessarily follow. 

L*(30) = 41 > 30; L*(60) = 59 < 60. 
The inequality fails. 

Proposition 6. Let n = Up®. If L *(n) > n, then 

Proof. The inequality o*(n) - (1 +n) >n is also written as o*(n) > 2n + 1. Then 

olnl>2+L>2. 
But 

o*(n) 
n 

Corollary 7. Lztn = Y[pa. If Z.*(7J>» >/?, then 

> 2. 

The results in Proposition 6 and Corollary 7 are necessary conditions but not sufficient The inequalities are 
first satisfied by an integer n with exponents a equal to 1. Among even integers, n =30 = 2'3-5 is the smallest. 
L*(30) = 41. Among odd integers,n = 15015 = 3-5*7.11-13 is the smallest. 11(15015) = 17240. 

Corollary 8. If n is even and Ll(n) > n, then n is divisible by at least three distinct primes. 

Corollary 9. if n is odd and Ll(n) > n, then n is divisible by at least five distinct primes. 

Proposition 10. For each natural number n, there is a natural number t= t(n) such that for k > f, 

L:(nk) < nk. 

Proof. Let/7 = 11/?"/and Q, the rationals. The function 6 : <N_ x N_ -> Q defined by 

n 1 + w 6(n,s) 

is, for fixed /?, a decreasing function of s bounded below by 1. Let t be the first integer such that 

6(n,t) < 2, 

Proposition 11. Let/77 = pan, (p,n) = 1 with L*(n) < n. If L*(m) > m, then 
2n 

2n~ a*(n) 
Proof L*(n) < n => o*(n)- (1 + n) < n => o*(n)- 1 < 2n 

L*(m) > m => o*(pan)-(1+pan) > pan 

- o*(n)- 1 > 2pan-pao*(n). 

Then using the first inequality 

2n > o*(n)~ 1 > pa[2n-o*(n)] and • 2n\, , > p. 
2n - o*(n) 

This proposition sets the bound on the multiples of a natural number nf L?(n) <n, which enjoy the reverse 
inequality. For/7 = 10, o*(n)= 18, 

2n 20 
2n-o*(n) 20-18 

f = 10. 

The possible p a are J, 7f3
2
f L*J30) = 41. L*J7Q)= 73; L*J90) = 89. 
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Note that for 90, / 

Yl(j+ ± \ = 2. 
\ P*l 

3. THE COMPUTER SEARCH FOR FIXED POINTS OF ITERATES OF L* 

A computer search for natura! numbers n such that L*(n) > n, 0 < n < 110,000, was run on an IBM 370, 
model 135. For each such natural number n, the iterated values (L2) (n) were calculated, until 0 was reached. 
The program allowed fifty iterations. The values under the iterations were printed out The process thus identi-
fies any set of fixed points with an element less than, or equal to, 110,000. 

Table 1 summarizes the results. There were no fixed points discovered. For all integers examined, iterations 
of L* eventually reached zero. For each n, the order of n is the first integerksuch that (L*)kM = O. For each 
value of the order, we list the first occurrence of the order and the frequency, or count, of the natural numbers 
with that order. The first natural number examined was 30; the last, 109,986. Note that there are no numbers 
of order 3 in the internal. Further the count of odd orders is relatively small. This can be explained, in part, by 
the few odd numbers under 110,000 satisfying L*(n) > n. Recall that the first such is 15015. A total of 7697 
numbers were examined. 

It is desirable to develop upper and lower bounds for the first integer which is fixed under (L*)2. 

Table 1 
LI 

Order 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

4. 

1st 
30 
— 
66 

1596 
294 
3290 
854 
1190 
4854 
15890 
14630 
21945 
38570 
76670 
104510 
107030 

Frequency 

2203 
0 

1947 
10 

1733 
38 

1133 
46 
446 
20 
121 
8 
5 
4 
1 
1 

THE FUNCTION L* 

In this section we examine L*. For any natural number/7, L*(n) = L^(n) + 2. So 

L*(n) > n => L*(n) > n. 

L*(1) = 1; L*(2) = 2. 

Thus L* has at least two fixed points. 
Proofs of the following results parallel those above. 

Lemma 12. For/7 e/ i / , L*(n) = 2\\, and only if,/7 =pa,p a prime, a> 1. 

Lemma 13. For n in N_, L*(n) has the same parity as n if, and only if, n = 2a; a> O. 

Theorem B. L* has exactly two fixed points, 1 and 2. 
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Proposition 14. \U = mn,(m,n) = /then L*fk) < L*(m)L*(n) + mL*(n) + nL*(m). 
Proposition 15. Let/7? = pan, (p,n) = 1. If L *(n) > n, then L*(m) > m. 
Proposition 16. Let/7 = 11/7 °\ If 

then L*(n) > n. 

Corollary 17. Let/? = 11/?a. If 

n / + — > 2, 

U[1+ 1-\> 2, 
p 

then L*(n) >n. 
Recall that in Proposition 6 and Corollary 7, the condition 

n ( / + 1- i > n f 7 + — I > 2 

was necessary but not sufficient. Here it is sufficient but not necessary. 

Proposition 18. For each natural number n, there is a natural number t= t(n) such that for k> t, 

< n L$(nk) 
Proof. Using the notation of the proof of Proposition 10, it suffices to let f be the first integer such that 

6(n,t) < | . 

Proposition 19. Let/77 =/7a/7, (p,n) = 1 with L*(n) < n. If L*(m) >m, then 
2n 

2n- o*(n) > p' 

A computer search for natural numbers/? such that L*(n)> n was run, 0 <n < 100,000. The iteration values 
were calculated and printed up to fifty iterations. The end value for iterations is 2 rather than 0. The search 
would have discovered any set of fixed points of an iterate of L* where one element of the set was less than, or 
equal to, 100,000. None were found. The results are in Table 2. The organization is as for Table 1. 

Table 2 
L: 

Order 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

u+ 
1st 
1,2 
6 

82005 
42 
498 
78 

2530 
402 

10650 
1518 

19635 
2470 
15015 
10158 

57030 
84315 

Frequency 
2 

2020 
2 

1274 
27 

1213 
144 
1154 
72 
698 
19 
289 
2 
85 
0 
15 
1 
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FIBONACCI ASSOCIATION RESEARCH CONFERENCE 
October 22, 1977 

Host: MENLO COLLEGE 
(El Camino Real) 
Menlo Park, Calif. 

9:30 Opening Remarks: V. E. Hoggatt, Jr. 

9:40 to 10:20 ARITHMETIC DIVISORS OF HIGHER ORDER 
Krishna Alladi (UCLA) 

10:30 to 11:00 FIBONACCI CHROMATOLOGY or HOW TO COLOR YOUR RABBIT 
Marjorie Johnson (Wilcox High School) 

11:10 to 12:00 PARTITIONS SUMS OF GENERALIZED PASCAL'S TRIANGLES 
(A Second Report) 
Claudia Smith (SJSU) or Verner E. Hoggatt, Jr. (SJSU) 

12:00 LUNCH - to each his own 

1:30 to 2:10 APPLICATIONS OF CERTAIN BASIC SEQUENCE CONVOLUTIONS 
TO FIBONACCI NUMBERS 

Rodney Hansen (MSU, Bozeman, Montana) 

2:20 to 3:00 GAMBLER'S RUIN AN D FIBONACCI NUMBERS 
Fred Stern (SJSU) 

3:10 to 3:30 ENUMERATION OF CHESS GAME ENDINGS 
George Ledin, Jr. (USF) 

3:40 to 4:20 PRIMER ON STERN'S DIATOMIC SEQUENCE 
Bob and Tina Giuls (SJSU) 


