and

$$
g_{n, n-1}=1-g_{n-2, n-1}-g_{n-1, n-1}=1-\left(f_{n-1}-1\right) a-\left(1-\left(f_{n+2}-1\right) a\right)=f_{n} a,
$$

$$
g_{n, n}=1-g_{n, n-1}=1-f_{n} a .
$$

Thus our claim is verified.
Now by considering the $n^{\text {th }}$ horizontal plane sum of E, we see that a is uniquely determined. Hence E is unique, and thus $E=A_{n}$. This completes the proof of the theorem.
Constructions for other extremal matrices and additional properties of planar stochastic matrices can be found in [1, 2].

REFERENCES

1. R. A. Brualdi and J. Csima, "Stochastic Patterns," to appear.
2. R. A. Brualdi and J. Csima, "Extremal Plane Stochastic Matrices of Dimension Three," to appear.
3. W. B. Jurkat and H. J. Ryser, "Extremal Configurations and Decomposition Theorems I," J. Algebra, Vol. 9 (1968), pp. 194-222.

*

BELL'S IMPERFECT PERFECT NUMBERS

EDWART T. FRANKEL

Schenectady, New York

A perfect number is one which, like 6 or 28 , is the sum of its aliquot parts. Euclid proved that $2^{p-1}\left(2^{p}-1\right)$ is perfect when $\left(2^{p}-1\right)$ is a prime; and it has been shown that this formula includes all perfect numbers which are even. ${ }^{1}$
In Eric Temple Bell's fascinating book ${ }^{2}$, the seven perfect numbers after 6 are listed as follows:
28, 496, 8128, 130816, 2096128, 33550336, 8589869056.
Checking these numbers by Euclid's formula, I found that

$$
2^{8}\left(2^{9}-1\right)=256 \times 511=130816
$$

and

$$
2^{10}\left(2^{11}-1\right)=1024 \times 2047=2096128
$$

However, $511=7 \times 73$; and 2047 $=23 \times 89$.
Inasmuch as 511 and 2047 are not primes, it follows that 130816 and 2096128 are not perfect numbers, and they should not have been included in Bell's list.

[^0]
[^0]: ${ }^{1}$ Encyclopedia Britannica, Eleventh Edition, Vol. 19, page 863.
 ${ }^{2}$ The Last Problem, Simon and Schuster, New York, 1961, page 12.

