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1. INTRODUCTION 

Fermat observed that the numbers 1, 3, 8, 120 have the following property: The product of any two in-
creased by one is a perfect square. Davenport showed that for 1, 3, B,x to have the same property* must be 
120 and that it is impossible to find integersx and y such that the five numbers 1, 3, 8,x, y have this unique 
property. 

In [1] and [2 ] , B. W. Jones extends the problem to polynomials by showing 

Theorem 1.1. Let w2 - 2(x + 1)w + 1 = O have a(x) and fi(x) as roots. Let f^(x) = (ak - pk)/(a- j3jl 
Letck(x) = 2fk(x)fk+i(x). Then the polynomialsx,x + 2, c^(x), c^+ifx) have the property that the product 
of any two plus one is a perfect square. 

Any enthusiast of the sequence of Fibonacci numbers would quickly observe that 1,3, and 8 are terms of 
that sequence whose subscripts are consecutive even integers. That is, they are respectively F2, F4, and F&. 
Using the Binet formula it is easy to show that the property enjoyed by 1,3, and 8 is shared with any three 
terms of the Fibonacci sequence whose subscripts are consecutive even integers. In fact, we have 

(1.1) F2nF2n+2 + 1 = F2n+1 

(1-2) F2nF2n+4 + 1 = F2n+2 
and 
(1-3) F2n+2F2n+4+ 1 = F2n+3-

One might now ask if there exists an integerx such that F2nx + 1, F2n+2x + 1 and F2n+4X + 1 are perfect 
squares. In order to show that the answer is yes we proceed as follows. From (1.1) we see that 

/ = F2n+1 - F2nF2n+2 = F2n+i F2n+2 - F2n F2n+3 
so that 
(1-4) 4F2nF2n+lF2n+2F2n+3 + 1 = (2F2n+1 F2n+2 - 1) . 

Replacing n by n + 1 in (1.1), we have 

/ = F2n+3 + F2n+iF2n+4 - F2n+sF2n+4 = F2n+\ F2n +4 - F2n +3F2n+2 

so that 
(1-5) 4F2n+1F2n+2 F2n+3F2n+4 + 1 = (2F2n+2F2n+3 + 1) . 

Using the Binet formula show that F2n+2 = F2n+1F2n+3 - I Multiply both sides of this equation by 4F2n+2 

to obtain 
(1-6) 4F2n+1 F2

2n+2F2n+3 + 1 = (2F2
2n+2 + 1)2, 

Combining (1.1) through (1.6) we have 

Theorem 1.2. For n > 1, the four numbers F2n, F2n+2, F2n+4, and x = 4F2n+iF2n+2F2n+3 have 
the property that the product of any two increased by one is a perfect square. 

For n respectively 1, 2, and 3 we obtain the quadruples (1, 3, 8, 120), the result of Fermat, (3, 8, 21, 2080) 
and (8, 21, 55, 37128). The authors conjecture that the value* of Theorem 1.2 is unique. 
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Although three terms of the Fibonacci sequence whose subscripts are consecutive odd numbers do not have 
the property of those with even subscripts we do have the following. 

Theorem 1.3. Let/? > 1 and x = 4F'2n+2P2n+3 F2n+4 t n e n t n e numbers F2n+i> F2n+3> F2n+5 an^ x 

are such that 
F2n+lF2n+3 ~ 1 = F2n+2 

2 F2n+lF2n+5~ 1 = F2n+3 
2 

F2n+3 F2n+5 ~ 1 = F 2n+4 
F2n+lX+ 1 = (2F2n+2F2n+3+ 1 >2 

F2n+3X+1 = <2F2
2n+3-1)2 

F2n+5X + 1 = (2F2n+3 F2n+4 ~ V • 

Here again the authors conjecture that the value of A- in Theorem 1.3 is unique. Letting/? respectively be 1, 
2, and 3 in Theorem 1.3 we obtain the quadruples (2, 5, 13,-480), (5, 13j 34, 8136), and (13, 34, 89, 157080). 

We now turn our attention to several problems which arose in our investigation of the results of Theorems 
1.2 and 1.3. 

First we wanted to know if there exists an x such that 

F2nx-1 = P2 

F2n+2X- 1 = M2 

j2n+4*- 1 = N2 . 

If such anx exists then by eliminating that value between pairs of equations, we have 
F2nM2-F2n+2P2 = F2n+1 

F2nN< 2 
F 2ii+4 P = i-2n+2 

F2n+2^2-F2n+4M2 F2n+3 

where L{ is the / Lucas number. One and only one of F2n,
 F2n+l> F2n+2 's even- Furthermore there exists 

an integer k such that/7 = 3k, n =3k+ 7, orn = 3k + 2. If n = 3k then P is odd and the first equation becomes 
- / = -p6k+2 =F£k+i = / (mod 4) which is impossible. If n = 3k+ 1 the first equation becomes F^^M -
F6k+4P2 = F6k+3- Since F^J^+J is even either M and/3 are .both even or both odd. If both are even then 0 = 
F6k+3 = 2 (mod 4) which is impossible. If both are odd then —2 = F^^+2 - F^^+4 =2 (mod 8) which is im-
possible. When n• = 3k + 2 M is odd and the first equation becomes J = F^k+4 = ^5^+5 = / (mod 4) which is 
impossible. Hence, the first equation is never solvable. Therefore no* can be found which satisfies the original 
system of equations. Following an argument similar to that given above it is easy to show that 

F2nN - F2n+4P = L2n+2 
is impossible. 

Next we tried to determine if more than one solution exists for 
*2 

(A) 
F2nx +1 = P' 

F2n+2X+1 = M2 

F2n+4x + 1 = Nz 

By eliminating the* we see that a necessary condition for a solution is 

' F2nM2-F2n+2P2 = ~F2n+l 
2 (A') F2nN-F2n+4P 

,2 F2n+2N'-F 2n+4 M* 

L-2n+2 • 

-F2n+3 
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Recognizing that the first and last equations of (A') are essentially the same, we conclude that a necessary 
condition for (A) to be solvable is that there exist a common solution of the Diophantine equations of the 
form 
(1.7) F2nM2-F2n+2P2 = -F2n+i 
and 
(1.8) F2nN2-F2n+4P2 = -L2n+2. 

Because of the relationships that exist between Diophantine equations of the form Ax2 - By2 = ±C, con-
tinued fractions, and linear recurrences, we were led to consider the auxiliary polynomials 

(1.8) w2 -2F2n+1w+ 1 = 0 
and 
(1.10) w2 - 2F2n+2w+ 1 = 0. 

Usingthese auxiliary polynomials we will develop a sequence of solutions to (1.7) and (1.8). In this and future 
developments we need the following lemma all of whose parts can be verified by using the Binet formula or 
formulas found in [1 ] , [2 ] . 

Lemma 1.1. For all /r ̂  / 
(a) 

(b) 

(c) 

. ( d ) 

2. SOLUTIONS OF F2nM2 - F2n+2P2 = -F2n+1 

We first turn our attention to (1.91 whose roots throughout this section are denoted by 

a>=F2n+l+j'F$n + l - 1 a n d $ = f2n+l ~ \/ffn+i ~ / 
LetHm = (am -fim)/(a-(3) then'{Hm}°^=0 is given by 

(2.1) H0 = 0,H'i = 1,Hm = 2F2n+1Hm_1-Hm.2, m>2 

and it can be verified that 

(2.2) Hm_1-HmHm_2 = 1-

With Mm = AHm + BHm_lf Pm = A*Hm + £*//m_j and (2.1), wesee that •• 

f Mm = -M1Hm,2 + M2Hm,1. 
(2.3) \ 

I Pm = -PlHm-2+P2Hm-l • 

Requiring that (Mm, Pm)be a solution of (1.7), provided (M1} P1) and (M2, P2) are, we have 

(Hm~2+HLl - 1)F2n+i= 2Hm^Hm^2(F2n+2P1P2-F2nM1M2) 

which by using (2.1) and (2.2) becomes 
(2.4) F2

n+1 = F2n+2P1P2-F2nM1M2. 

Obviously (±1, ±1) is a solution of (1.7) and Lemma 1.1, part (a), tells us that(±F2n+3, ±F2n+2) is also a 
solution. Checking the sixteen possible combinations respectively iorfM^, P^) and (M2, P2) in (2.4) we find 
only four solutions which are 

{(1U (F2n+3, F2n+2)l {(I-1), (F2n+3, -F2n+2)}, {(- HI (-F2n+3, F2n+2)}/ 

and 
{(-1,-1), (-F2n+3, -F2n+2i} . 

Each of these four solutions, when used in conjunction with (2.3), gives us a sequence \(Mm, Pmj)m=i ° f 
solutions to (1.7) which, except for signs, are the same. Because of the exponents in (1.7) we consider only 
those pairs given by 
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Mm = 2F2n+lMm-l- Mm-2 

I Pyn = 2fr2n+l^m-l ~ Pm-2 

where M1=P1 = 7, M2 = F2n+3, and P2 = F2n+2 • 

Noting that the auxiliary polynomial fo r { / I< f m }^^ md{Pm\m=i \$w -2F2n+iw + 1 = 0, it is easy to 
show by standard techniques that 

( 2 6 ) (Mm = f(F2n(3+ 1)am - (F2na+ 1)Pm]/(a~P) 

[Pm = [(-~F2n_lP+Vam-(-F2n_la+1)pmJ/(a-(3) 

Let DM = MJ^ - Mm_iMm+1 be the characteristic o f { M m } ^ ^ . Using (2.6), it can be shown that 

(2.7) DM = F2n+1F2n+2 and Dp = -F2nF2n+1 

or 
(2.8) F2nDM = -F2n+2DP . 

Using 
( 2 g ) {Mm_2 = 2F2n+1Mm_t-Mm 

I Pm-2 = 2F2n+iPm_i - Pm 

together with part (b) of Lemma 1.1 it can be verified \\\dx{(Mm, Pm))<^l=1 is another sequence of solutions 
of (1.7) where 

( 2 1 Q ) f M~m = 2F2n+1Mm_1 - Mm_2 

I P'm = 2F2n+iPm_i - Pm-2 
with 

Ml = Pt = 1, M2 = -F2n and P2 = F2n-i • 

The sequences {Mm}m=i ^^\PmYm=i are galled conjugate sequences of {Mm}m=i and {Pm}m=l- Since 
the auxiliary polynomial for { M m } ^ = ^ ^^{Pm}m=i 's 

w2-2F2n+l + 1 = 0, 
we see by standard techniques that 

( 2 n ) f Mm = [(-F2n+3&+ Dam-(-F2n+3a+ Wml/(a-&) 

I Pm = f(-F2n+2p+ 1)am - (-F2n+2a+ lWm]/{a-$) 

' 2 ' 1 2 ' DM = F2n+lF2n+2 = °M 
and 
(2.13) Dp = -F2nF2n+1 = DP. 

3. SOLUTIONS N F2nN2-F2n+4P2 = -L2n+2 

We now turn our attention to (1.10) whose roots throughout this section are denoted by 

7 = F2n+2 + ^/F2
2n+2 - 1 and 5 - F2n+2 - s/F2

n+2 - / -

Let 
Hm = (ym-8m)/(7-3) 

then { / / m } ^ = # is given by 

(3.1) H0 = 0, Ht = 1, Hm = 2F2n+2Hm„i -7/m_2, m > 2 

and it can be shown that 

(3-2) Hm^1 - HmHm_2 = 7. 

Let (Ni, Pil (N2, P2) be solutions of (1.8). Let {(Nm, Pm)}Z=3 be given by 
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( 3 3 ) I Nm = -N1Hm„2+N2Hm„1 

[ Pm = -PlHm-2 + P2^m-1 

Let(Nm,Pm)be a solution of (1.8). By an argument similar to that given in Section 2, we find 
(3.4) 

L 2n+2 F2n +2 ~ F2n+4 Pi P2 ~ P2n N \N 2 . 
Lemma 1.1, part (c), yields (±F2n+3, ±F2n+i) as a solution of (1.8). Obviously (±1, ±1) is a solution of 

(1.8). Letting these pairs be (N1} P^) and (N2, P2)we obtain sixteen possible values for (3.4). Using 
(3-5) L2n+2p2n+2 = F2n+4F2n+l+F2nF2n+3 
it is easy to check that only four solutions exist which, except for signs, are the same. The solution we use 
gives rise to 

Nm = 2F2n+2^m-l - Nm~2 

'm ~ ^'2n+2'm-l ~~ 'm-2 
(3.6) 

where 
Ni = Pi = I N2 = -F2n+3 and P2 = F2n +1 

Furthermore, 

(3.7) 
Nm = f(-L2n+38+ Vym - (-L2n+37+ DSm]/(7-S) 

Pm = [(-L2n+i5 + 1hm - (-L2n+17+ DSm]/h- 5 ) 

(3.8) DN = F2n+4l-2n+2> Op = -F2nL2n+2 

and 

(3.9) F2nDN = -F2n+4DP. 

The conjugate sequences{/ym}m=l and {Pm}m=l are 9'ven by 

Nm = 2F2n+2Nm-l - Nm-2 

I Pm ~ 2F2n+2Pm--l ~ Pm-2 

with _ _ _ _ • 
Ni = Pi = 1, N2 = L2n+3, and P2 = L2n+1 . 

Using Lemma 1.1, part (d), it can be shown that {(Nm, Pm))m=l >s a sequence of solutions to (1.8). Further-
more, _ 

Nm = f(F2n+3?> + Dim ~ (F2n+37+ Vhm]/h~h) 
( 3 ' 1 1 ' ' Pm = [(-F2n+1?>+ lhm ~ (-F2n + 17+ 1)8m]/(7-&) 

(3.12) D^ = F2n+4L2n+2 = °N 

and 

(3.13) D¥ = -F2nL2n+2 = 0P. 

Although the results of Sections 2 and 3 do not directly give a solution to (A), we can generate an infinite 
sequence of solutions for each of the equations of (A') by using (2.5), (2.10), (3.6) and (3.10). 

4. COWCLUDIWG REMARKS 

By eliminating thex value between pairs of equations we see that a necessary condition for 

(B) 

or 

F2n+lx+1 = R2 

F2n+3x +1 = S2 

{F2n+5X +1 = T2 
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(0 

to be solvable is 

(B') 

or 

(0 

to be solvable is 

(B') 

or 

(C) 

F2n+1><- 1 = R 
2 

F2n+3X ~ 1 = S 

I F2n+5* - 1 = T2 

Fln+lS' ~ F2n+3R = ~F2n+2 

Fln+lT ~ F2n+5 FT = -L2n+3 

I F2n+3 T ~ F2n+5S = ~F2n+4 

f2n+lX- 1 RZ 

F2n+3X ~ 1 ~ S 

F2n+5* - 1 = T2 

I F2n+lS ~ F2n+3 R = ~F2n+2 

•l-2n+3 

F2n+4 

^ F2n+1 T ~ F2n+5R = ~^-2n+3 

F2n+3 T ~ F2n+5S 

F2n+lS -F2n+3R = F 2n+2 
F2n+lT - F2n+5R = L2n+3 

I F2n+3 F - F2n+5$ = f'2n+4 
Recognizing the similarity of several of the equations we are led to consider only solutions of Diophantine 
equations of the form 

(4.1) 

and 

(4.2) 

F2n+1$ ~ F2n+3Ff = + F2n+2 

F2n+1 T - F2n+Sft = +L2n+3 

CASES: F2n+iS - F2n+3 R = +F2n+2 • 
In this case we consider the auxiliary polynomial 

•2F2n+2W- 1 0 

whose roots are denoted by 

(4.3) 

e = F2n+2 + -jF2
2n+2 + 7 and o = F2n+2 - ^FJn+2 + 1 

Following the techniques of Section 2 it can be shown that 

\ Sm = 2F2n+2$m-l + $m-2 

[_Rm =. 2F2n+2Ryn-l + Rm-2 

with 
St = Rt = I S2 = F2H+4, and R2 = F2n+3> 

is a solution of 

-F271+2 F-2n+lS ~ F2n+3 R~ 
when m is odd and 

FZn+l S - F2n+3 R F2n+2 
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when m is even. Furthermore 

Sm = [(-F2n+i o + lkm - (-F2n+i e + l)om]/(e - a) 
(4.4) , 

Rm = [(F2no+ 1)em - (F2ne + 1)am]/(e - a) 

(4-5) Ds = (-1)mF2n+3F2n+2 % = (-)<)m+1F2n+l F2n+2 

and 

(4.6) F2n+3DR = -F2n+1Ds. 

The conjugate sequences { S m } ^ ^ and {RmJm=i are 9'ven ^y 

(4.7) , _ 
Rm ~ -2F2n+2 Rm-1 + Rm-2 

with _ _ _ 
Hi = ~Rl = 7, S2 = F2n+1 and R2 = -F2n 

When m is odd, (Sm, Rm) is a solution of 
F2n+lS ~F27i+3 R = ~F2n+2 

while it is a solution of 

F2n+1 $ ~ F2n+3 R = F2n+2 

when m is even. 
Furthermore 

(4.8) 
Sm = [(F2n+4€+ 1)(-o)m - (F2n+4o+ 1)(~e)m]/(e- a) 

. Rm = [(F2n+3e+ D(-o)m-(F2n+3o+ 1)(-e)m]/(e- o) 

(4.9) % = DS = (-l)mF2n+3F2n+2 

and 

(4.10) % = DR = (-1)m+lF2n+lF2n+2-

CASE II: F2n+1T2- F2n+5R2 = +L2n+3 . 

In this case we consider the auxiliary polynomial w - 2F2n+3w- 7 = 0 whose roots a re 

^ = F2n+3 + -JF2
2n+3 + 1 and £ = F2n+3 - <jF2

2n+3 + 1 . 

Following the techniques of Section 2, it can be shown that 

' m = ^'2n+3 ' m-1 ' m-2 
(4.11, 

Rm - 2 F2n+3Rm_i+ Rm-2 

with 
Ti = Rt = 1, T2 = -F2n+4, and R2 = F2n+2, 

is a solution of 
2 2 

F2n+1T ~F2n+5R = ~L2n+3 
when/77 is odd and 

F2n+1 T ~ F2n+5 R = L2n+3 

when/77 is even. Furthermore 

f rm = i(L2n+4$+mm = a2«+44> + mmi/w - u 
1 Rm = [(L2n+2%+mm = (L2n+2i>+ mmi/^ - v 
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W.13) DT = (-1)mF2n+5L2n+3, DR = (-1)m+lF2n+lL2n+3 

and 

(4.14) F2n+1DT= -F2n+5DR . 

The conjugate sequences { r m } ^ = j f and { / ? m } ^=^ are given by 

M ic) J T™> = ~2F2n+3 Tm-l + Tm_2 

[/?m = -2F2n+3Rm_1+Rm_2 

with _ _ 
Ti = R1 = 1, ~f2 = -L2n+4 and ~R2 = -L2n+2. 

When/?? is odd (Tm, Rm) is a solution of 

F2n+lT -F2n+5R = -L2n+3 

F2n+lT ~F2n+5R - L2n+3 

while it is a solution of 

when/77 is even. Furthermore 

(4 8) \fm = f(-F2n+4^ + ix-um - (-F2n+4$ + DM rim - v 
I *m = [<F2n+2^J + Df-U™ - (F2n+2% + 1)M)m]/^ - V 

W.9) DT = DT= (~l)mF2n+5L2n+3 

and 

(4-10) D^ = DR = (-1)m+lF2n+lL2n+3. 

In closing, we observe that if you choose m = 3 in (2.5) and (3.6) you obtain 

M3 = 2F2n+1F2n+3 - 7 = 2F2n+2+ h p3 = 2F2n+1F2n+2- 7, and N3 = -2F2n+2F2n+3 ~ 1 

which are equivalent to the values in (1.6), (1.4), and (1.5). Letting/77 =3 in (4.3) and (4.11) you obtain 

$3 = 2F2n+2F2n+4 + 1 = 2F2n+3 - 7, R3 = 2F2n+2F2n+3 + 7, and T3 = -2 F2n+3F2n+4 + 1 

which are equivalent to the values in Theorem 1.3. 
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