A NOTE ON THE SUMMATION OF SQUARES

VERNER E. HOGGATT, JR.
San Jose State University, San Jose, California 95192

Consider

$$
P_{n+2}=p P_{n+1}+q P_{n}, \quad P_{0}=0, \quad P_{1}=1 .
$$

We wish to find
(A)

$$
\sum_{j=1}^{n} P_{j}^{2}=P_{n} P_{n+1} \quad \text { if } p=q=1
$$

(B)

$$
\sum_{j=1}^{n} P_{j}^{2}=\frac{P_{n} P_{n+1}}{p} \text { if } q=1
$$

$$
\sum_{j=1}^{n} P_{j}^{2}=\frac{2 q^{2} P_{n+1} P_{n}+\frac{(1-q)}{p}\left[P_{n+2}^{2}+\left(1-p^{2}\right) P_{n+1}^{2}-1\right]}{q\left(p^{2}+q^{2}\right)-(p-q)^{2}}
$$

The usual way to establish (A) is by induction after (A) has been guessed from tabular data, or by the geometric method of Brother Alfred [1]. We now establish (B) by the method of [1].

Form p unit squares horizontally. Ab ove these add p copies of $p \times p$ squares. This yields

$$
p \cdot\left(p^{2}+1\right)=P_{2} P_{3} .
$$

Idd to the left p copies of the square P_{2} on the edge to get a rectangle $P_{3} P_{4}$.

Since every square P_{1}, P_{2}, P_{3} is used p times so far

$$
P_{1}^{2}+P_{2}^{2}+P_{3}^{2}=P_{3} P_{4} / p .
$$

This obviously may be continued as far as one wishes so that

$$
\sum_{j=1}^{n} P_{j}^{2}=P_{n} P_{n+1} / p, \quad p \neq 0, \quad q=1
$$

Second Method: $(q=1)$

Start with

$$
P_{n+2}=p P_{n+1}+P_{n}
$$

and multiply through by P_{n+1} to get

$$
\begin{gathered}
P_{n+1} P_{n+2}=p P_{n+1}^{2}+P_{n} P_{n+1} \\
\sum_{j=0}^{n} P_{j+2} P_{j+1}=\sum_{j=0}^{n} p P_{j+1}^{2}+\sum_{j=0}^{n} P_{j} P_{j+1} .
\end{gathered}
$$

Thus,

$$
P_{n+2} P_{n+1}=p \sum_{j=0}^{n} P_{j+1}^{2}=p \sum_{j=1}^{n+1} P_{j}^{2} \quad \text { and } \quad \sum_{j=1}^{n} P_{j}^{2}=P_{n} P_{n+1} / p .
$$

Before doing the general case, let us consider the result $p=1$ and $q \neq 0$.

$$
\begin{gathered}
P_{n+2}=P_{n+1}+q P_{n} \\
P_{n+2} P_{n+1}=P_{n+1}^{2}+q P_{n+1} P_{n} \\
q P_{n+1} P_{n}=q P_{n}^{2}+q^{2} P_{n} P_{n-1} \\
q^{2} P_{n} P_{n-1}=q^{2} P_{n-1}^{2}+q^{3} P_{n-1} P_{n-2} \\
\ldots \\
\ldots \\
q^{n-1} P_{2} P_{1}=q^{n-1} P_{1}^{2}+q^{n} P_{1} P_{0} .
\end{gathered}
$$

Thus,

$$
\sum_{j=0}^{n} q^{j} P_{n+1-j}^{2}=P_{n+1} P_{n+2}
$$

We now proceed to the general case. From

$$
P_{n+2} P_{n+1}=p P_{n+1}^{2}+q P_{n} P_{n+1}
$$

one may at once write

$$
\begin{equation*}
\sum_{j=1}^{n+1} p P_{j}^{2}=P_{n+2} P_{n+1}+(1-q) \sum_{j=1}^{n} P_{j} P_{j+1} \tag{D}
\end{equation*}
$$

while from

$$
P_{j+2}^{2}=P^{2} P_{j+1}^{2}+q^{2} P_{j}^{2}+2 p q P_{j} P_{j+1}
$$

one can immediately write

$$
\begin{equation*}
P_{n+2}^{2}+P_{n+1}^{2}-P_{2}^{2}-P_{1}^{2}=p^{2}\left(P_{n+1}^{2}-P_{1}^{2}\right)+\left(p^{2}+q^{2}-1\right) \sum_{j=1}^{n} P_{j}^{2}+2 p q \sum_{j=1}^{n} P_{j} P_{j+1} \tag{E}
\end{equation*}
$$

One can now use (D) and (E) to solve directly for

$$
\begin{aligned}
\sum_{j=1}^{n+1} p P_{j}^{2}=P_{n+2} P_{n+1}+(1-q) \sum_{j=1}^{n} P_{j} P_{j+1} & =P_{n+2} P_{n+1}+\frac{(1-q)}{2 p q}\left\{P_{n+2}^{2}+P_{n+1}^{2}-p^{2}-1-p^{2} P_{n+1}^{2}+p^{2}\right. \\
& \left.=\left(p^{2}+q^{2}-1\right) \sum_{j=1}^{n} P_{j}^{2}\right\}
\end{aligned}
$$

$$
\begin{gathered}
p P_{n+1}^{2}+\left(\sum_{j=1}^{n} P_{j}^{2}\right)\left(p-\frac{(1-q)\left(p^{2}+q^{2}-1\right)}{2 p q}\right)=P_{n+2} P_{n+1}+\frac{1-q}{2 p q}\left[P_{n+2}^{2}+P_{n+1}^{2}-1-p^{2} P_{n+1}^{2}\right] \\
\sum_{j=1}^{n} p P_{j}^{2}=\frac{P_{n+2} P_{n+1}-p P_{n+1}^{2}+\frac{(1-q)}{2 p q}\left[P_{n+2}^{2}+P_{n+1}^{2}\left(1-p^{2}\right)-1\right]}{\left(2 p q-p^{2}-q^{2}+1+q p^{2}+q^{3}-1\right) / 2 p q}
\end{gathered}
$$

Testing $p=1, q=1$,

$$
\sum_{i=1}^{n} F_{i}^{2}=\frac{2 F_{n+2} F_{n+1}-2 F_{n+1}^{2}}{2}=F_{n+1} F_{n}
$$

For $q=1$ only,

$$
\sum_{i=1}^{n} p P_{i}^{2}=\frac{2 p P_{n+2} P_{n+1}-2 p^{2} P_{n+1}^{2}}{p^{2}+1-(p-1)^{2}}=\frac{P_{n+2} P_{n+1}-p P_{n+1}^{2}}{2 p}=P_{n+1} P_{n}
$$

so that

$$
\sum_{i=1}^{n} P_{i}^{2}=P_{n+1} P_{n} / p
$$

Thus,

$$
\begin{aligned}
\sum_{j=1}^{n} P_{j}^{2} & =\frac{2 q P_{n+2} P_{n+1}-2 p q P_{n+1}^{2}+\frac{(1-q)}{p}\left[P_{n+2}^{2}+\left(1-p^{2}\right) P_{n+1}^{2}-1\right]}{q\left(p^{2}+q^{2}\right)-(p-q)^{2}} \\
& =\frac{2 q^{2}\left(P_{n+1} P_{n}\right)+\frac{(1-q)}{p}\left[P_{n+2}^{2}+\left(1-p^{2}\right) P_{n+1}^{2}-1\right]}{q\left(p^{2}+q^{2}\right)-(p-q)^{2}}
\end{aligned}
$$

REFERENCE

1. Brother Alfred Brousseau, "Fibonacci Numbers and Geometry," The Fibonacci Quarterly, Vol. 10, No. 3 (April, 1972), pp. 303-318 ${ }^{+}$.
