GENERATING IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS TRIPLES

A.F.HORADAM

University of York, York, England, and University of New England, Armidale, Australia

BACKGROUND

In his article on generating identities for Pell triples, which involve the two Pell sequences, Serkland [5] modelled his arguments on those used by Hansen [1] for Fibonacci and Lucas sequences. Both articles suggest generalizations in a natural way.

Consider the following pairs of sequences (1) and (2), and (3) and (4):

				n=0	1	2	3	4	5	6					
(1)	Fibonacci	F_n		0	1	1	2	3	5	8					
(2)	Lucas	L_n		2	1	3	4	7	11	18					
(3)	Pell	P_n		0	1	2	5	12	29	70	••••				
(4)	Pell	R_n		2	2	6	14	34	82	198					
for which the recurre	ence relations	5													
(5)				F_{n+2}	2 =	F_{n+}	1 + F	n							
(6)				L_{n+2}	2 =	L_{n+}	1 + L	п							
(7)				P_{n+2}	2 =	2P _n	+1 + P	7 n							
(8)				R_{n+2}	=	$2R_n$	+1 +	R_n							
and the summation r	elations														
(9)				F_{n+j}	1 + I	⁻ n-1	= L,	n,							
(10)				<i>P</i> _{<i>n</i>+1}	+ H	n -1	= R;	п							
hold. It is natural to exa properties:	amine pairs o i) A ₀ = 0	of sequences A_1	ienc = ;;	es {A 1, A _r	n} ;	and = c,	$\{B_n\}$ s A_{n+1}	similar + dA _r	r to (1 , <i>(c</i>) and (<i>≠ 0,</i> ,	2), anc d <i>≠ 0</i>	l (3) ar	ıd (4) h	aving	the
(11) { (i	i) $B_0 = 2$, B ₁	= c	B_n	+2	= cB	n+1 +	-dB _n							

Thus,
$$A_n = F_n$$
 and $B_n = L_n$ if $c = 1$, $d = 1$, while $A_n = P_n$ and $B_n = R_n$ if $c = 2$, $d = 1$.
Generally, n is any integer. From (11) (i) and (ii), we may deduce that when $d = 1$,

(12)
$$A_{-n} = (-1)^{n+1} A_n$$

(13)
$$B_{n} = (-1)^n B_n$$

$$D_{-n} = (-1) D_n$$

(14)
$$A_{-n+1} + A_{-n-1} = B_{-n}$$
.

Result (14) may be readily derived from (11) (iii), (12) and (13).

It looks as though d = 1 is a condition for property (11) (iii), which generalizes (9) and (10), to exist. We proceed to establish this fact.

GENERALIZATIONS

 $+\beta^n$

The Binet forms for A_n and B_n are

$$A_n = \frac{a^n - \beta^n}{a - \beta}$$

$$B_n = a^n$$

where a, β are the (distinct) roots of $x^2 - cx - d = 0$, so that

(17)
$$a = \frac{c+D}{2}, \quad \beta = \frac{c-D}{2}, \quad a+\beta = c, \quad a-\beta = D, \quad D = \sqrt{c^2+4d}, \quad a\beta = -d.$$

From (11) (iii), (15) and (16), we have

$$(a^{n+1} - \beta^{n+1}) + (a^{n-1} - \beta^{n-1}) = (a - \beta)(a^n + \beta^n)$$

$$(a^{n-1} - \beta^{n-1})(a\beta + 1) = 0 \quad \text{on simplification}$$

$$a\beta + 1 = 0 \quad \because \quad a^{n-1} - \beta^{n-1} \neq 0 \quad (\text{i.e.}, a \neq \beta)$$

$$d = 1 \quad \because \quad a\beta = -d \quad \text{by (17).}$$

(18)

Thus, the required condition is d = 1 with c unrestricted.

Consequently, there are infinitely many pairs of sequences $\{A_n\}$ and $\{B_n\}$ having the properties:

(11)'
$$\begin{cases} (i) \quad A_0 = 0, \quad A_1 = 1, \quad A_{n+2} = cA_{n+1} + A_n \quad (c \neq 0) \\ (ii) \quad B_0 = 2, \quad B_1 = c, \quad B_{n+2} = cB_{n+1} + B_n \\ (iii) \quad A_{n+1} + A_{n-1} = B_n \end{cases}$$

Their Binet forms (15) and (16) now involve

(17)'
$$a = \frac{c+D}{2}, \quad \beta = \frac{c-D}{2}, \quad a+\beta = c, \quad a-\beta = D, \quad D = \sqrt{c^2+4}, \quad a\beta = -1,$$

where α,β are now the roots of $x^2 - cx - 1 = 0$.

Some terms of these sequences are:

Generating functions for these sequences are

(21)
$$\sum_{n=1}^{\infty} A_n x^n = x(1 - cx - x^2)^{-1}$$

(22)
$$\sum_{n=0}^{\infty} B_n x^n = (2 - cx)(1 - cx - x^2)^{-1}$$

The Theorems given in Serkland [5] follow directly for $\{A_n\}$ and $\{B_n\}$ by employing his methods, though in Theorems 1, 2, 3 use of the Binet forms (15) and (16) with (17)' produces the results without difficulty. Following Serkland's numbering [5], we have these generalized theorems:

Theorem 1. $A_n B_m + A_{n-1} B_{m-1} = B_{m+n-1}$

Theorem 2. $A_n A_m + A_{n-1} A_{m-1} = A_{m+n-1}$

Theorem 3.
$$B_m B_n + B_{m-1} B_{n-1} = B_{m+n} + B_{m+n-2} = (c^2 + 4)A_{m+n-1}$$

Theorem 4.
$$A_p A_q B_r = \sum_{k=0}^{q-1} (A_{k+1} B_{p+k+r-k} - A_{p+k+1} B_{q+r-k})$$

Theorem 5.
$$A_p A_q A_r = \sum_{k=0}^{r-1} (A_{p+q+r-k} A_{k+1} - A_{p+k+1} A_{q+r-k})$$

Theorem 6.
$$A_p B_q B_r = \sum_{k=0}^{p-1} ((c^2 + 4)A_{q+r+k+1}A_{p-k} - B_{q+k+1}B_{p+r-k})$$

Theorem 7.
$$B_p B_q B_r = (c^2 + 4) \left[\sum_{k=0}^{p-2} (A_{q+r+k+1} B_{p-k} - A_{p+r-k} B_{q+k+1}) + c A_{p+q+r} \right] - c B_{p+q} B_{r+1}.$$

Of these theorems, we prove only the second part of Theorem 3 and all of Theorem 7 (taking the opportunity to correct some typographical errors in the original). A neater form for the expression of Theorem 3 (second part) is

$$B_{n+1} + B_{n-1} = (c^2 + 4)A_n$$

which should be compared with 11 (iii).

Proof of Theorem 3 (second part).

$$B_{m+n} + B_{m+n-2} = (A_{m+n+1} + A_{m+n-1}) + (A_{m+n-1} + A_{m+n-3}) \text{ by (11)' (iii)}$$

= $A_{m+n+1} + 2A_{m+n-1} + A_{m+n-3}$
= $(cA_{m+n} + A_{m+n-1}) + 2A_{m+n-1} + A_{m+n-3}$ by (11)' (i)
= $cA_{m+n} + 3A_{m+n-1} + A_{m+n-3}$
= $c(cA_{m+n-1} + A_{m+n-2}) + 3A_{m+n-1} + A_{m+n-3}$ by (11)' (i)
= $(c^2 + 3)A_{m+n-1} + (cA_{m+n-2} + A_{m+n-3})$
= $(c^2 + 4)A_{m+n-1}$ by (11)' (i) .

Proof of Theorem 7. $B_p B_q B_r = (A_{p+1} + A_{p-1})B_q B_r$

by (11)' (iii)

$$= A_{p+1}B_{q}B_{r} + A_{p-1}B_{q}B_{r} = \sum_{k=0}^{p} ((c^{2} + 4)A_{q+r+k+1}A_{p-k+1} - B_{q+k+1}B_{p+r-k+1})$$

$$+ \sum_{k=0}^{p-2} ((c^{2} + 4)A_{q+r+k+1}A_{p-k-1} - B_{q+k+1}B_{p+r-k-1}) \text{ by Theorem 6}$$

$$= \sum_{k=0}^{p-2} \left[(c^{2} + 4)A_{q+r+k+1}(A_{p-k+1} + A_{p-k-1}) - B_{q+k+1}(B_{p+r-k+1} + B_{p+r-k-1}) \right]$$

$$+ (c^{2} + 4)A_{2}A_{p+q+r} - B_{p+q}B_{r+2} + (c^{2} + 4)A_{1}A_{p+q+r+1} - B_{p+q+1}B_{r+1}$$

$$= \sum_{k=0}^{p-2} (c^{2} + 4)(A_{q+r+k+1}B_{p-k} - B_{q+k+1}A_{p+r-k})$$

$$+ (c^{2} + 4)(cA_{p+q+r} + A_{p+q+r+1}) - (B_{p+q}B_{r+2} + B_{p+q+1}B_{r+1})$$

$$= (c^{2} + 4) \left[\sum_{k=0}^{p-2} (A_{q+r+k+1}B_{p-k} - B_{q+k+1}A_{p+r-k}) + cA_{p+q+r} + A_{p+q+r+1} \right]$$

$$- (cB_{p+q}B_{r+1} + B_{p+q}B_{r} + B_{p+q+1}B_{r+1}) =$$

1977]

GENERATING IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS TRIPLES

$$= (c^{2} + 4) \left[\sum_{k=0}^{p-2} (A_{q+r+k+1}B_{p-k} - A_{p+r-k}B_{q+k+1}) + cA_{p+q+r} \right] - cB_{p+q}B_{r+1} \qquad \text{by Theorem}$$

Putting c = 1 in Theorems 1–7 we obtain the theorems of Hansen [1] for the Fibonacci-Lucas pair of sequences. With c = 2, the theorems of Serkland [5] for the two Pell sequences follow. The forms of Hansen's Theorem 5 and Serkland's Theorem 5 should be compared.

The natural extension of the special cases considered by Hansen [1] and Serkland [5] occurs when c = 3. Call these sequences $\{X_n\}$ and $\{Y_n\}$, some terms of which are:

		 <i>n=</i> -3	-2	-1	0	1	2	3	4	5	6	
(23)	X_n	 10	-3	1	0	1	3	10	33	109	360	
(24)	Yn	 -36	11	-3	2	3	11	36	119	393	1298	

Theorems 1–7, and the associated background details, readily apply with c = 3 ($c^2 + 4 = 13$). Interested readers may construct other pairs of related sequences from the infinitely many possibilities manifested in (19) and (20).

CONCLUDING REMARKS

Examples of familiar pairs of sequences which are excluded from our considerations (i.e., for which $d \neq 1$) are (a) the Fermat sequences $\{2^n - 1\}, \{2^n + 1\}, (c = 3, d = -2)$

(b) the Chebyshev sequences

$$\{T_n = 2\cos n\theta\}, \quad \left\{U_n = \frac{\sin(n+1)\theta}{\sin\theta}\right\} \quad (c = 2\cos\theta, \ d = -1).$$

(Obviously, in (a), $2^n + 1 = (2^n - 1) + 2$, i.e., the two Fermat sequences are not independent of each other.)

Comments on the excluded degenerate case which occurs when $a = \beta$, i.e., $D = \sqrt{c^2 + 4d} = 0$, may be found in Horadam [3].

Further information on the Pell sequences, as special cases of the sequence $\{W_n\}$ for which

$$W_0 = a, \quad W_1 = b, \quad W_{n+2} = cW_{n+1} + dW_n$$

(which generalizes (11) (i) and (ii)), is given in Horadam [4]. For a partition of $\{W_n\}$ into Fibonacci-type and Lucas-type sequences the reader is referred to Hilton [2], which is generalized to r^{th} -order sequences by Shannon [6].

REFERENCES

- 1. R. T. Hansen, "Generating Identities for Fibonacci and Lucas Triples," *The Fibonacci Quarterly*, Vol. 10, No. 6 (December 1972), pp. 571--578.
- 2. A. J. W. Hilton, "On the Partition of Horadam's Generalized Sequences into Generalized Fibonacci and Lucas Sequences," *The Fibonacci Quarterly*, Vol. 12, No. 4 (December 1974), pp. 339-345.
- A. F. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers," Duke Math. Journal, Vol. 32 (1965), pp. 437–446.
- 4. A. F. Horadam, "Pell Identities," The Fibonacci Quarterly, Vol. 9, No. 3 (Oct. 1971), pp. 245–252.
- 5. C. Serkland, "Generating Identities for Pell Triples," *The Fibonacci Quarterly*, Vol. 12, No. 2 (April 1974), pp. 121–128.
- 6. A. G. Shannon, "A Generalization of Hilton's Partition of Horadam's Sequences," *The Fibonacci Quarterly*, to appear.

292

3.