GENERATING IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS TRIPLES

A. F. HORADAM

University of York, York, England, and University of New England, Armidale, Australia

BACKGROUND

In his article on generating identities for Pell triples, which involve the two Pell sequences, Serkland [5] modelled his arguments on those used by Hansen [1] for Fibonacci and Lucas sequences. Both articles suggest generalizations in a natural way.
Consider the following pairs of sequences (1) and (2), and (3) and (4):
(2)

		\cdots	$n=0$	1	2	3	4	5	6	\cdots
Fibonacci	F_{n}	\cdots	0	1	1	2	3	5	8	\cdots

(3)
(4)

Lucas	L_{n}	\cdots	2	1	3	4	7	11	18	\cdots
Pell	P_{n}	\cdots	0	1	2	5	12	29	70	\cdots
Pell	R_{n}	\cdots	2	2	6	14	34	82	198	\cdots

for which the recurrence relations

$$
\begin{align*}
F_{n+2} & =F_{n+1}+F_{n} \tag{5}\\
L_{n+2} & =L_{n+1}+L_{n} \tag{6}\\
P_{n+2} & =2 P_{n+1}+P_{n} \tag{7}\\
R_{n+2} & =2 R_{n+1}+R_{n}
\end{align*}
$$

(8)
and the summation relations

$$
\begin{align*}
& F_{n+1}+F_{n-1}=L_{n}, \tag{9}\\
& P_{n+1}+P_{n-1}=R_{n}
\end{align*}
$$

hold.
It is natural to examine pairs of sequences $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ similar to (1) and (2), and (3) and (4) having the properties:

$$
\left\{\begin{array}{l}
\text { (i) } A_{0}=0, \quad A_{1}=1, \quad A_{n+2}=c A_{n+1}+d A_{n} \quad(c \neq 0, d \neq 0) \\
\text { (ii) } B_{0}=2, B_{1}=c, \quad B_{n+2}=c B_{n+1}+d B_{n} \tag{11}\\
\text { (iii) } A_{n+1}+A_{n-1}=B_{n}
\end{array}\right.
$$

Thus, $A_{n} \equiv F_{n}$ and $B_{n} \equiv L_{n}$ if $c=1, d=1$, while $A_{n} \equiv P_{n}$ and $B_{n} \equiv R_{n}$ if $c=2, d=1$. Generally, n is any integer. From (11) (i). and (ii), we may deduce that when $d=1$,

$$
\begin{align*}
& A_{-n}=(-1)^{n+1} A_{n} \tag{12}\\
& B_{-n}=(-1)^{n} B_{n} \tag{13}\\
& A_{-n+1}+A_{-n-1}=B_{-n} . \tag{14}
\end{align*}
$$

Result (14) may be rearily derived from (11) (iii), (12) and (13).
It looks as though $d=1$ is a condition for property (11) (iii), which generalizes (9) and (10), to exist. We proceed to establish this fact.

GENERALIZATIONS

The Binet forms for A_{n} and B_{n} are

$$
\begin{align*}
& A_{n}=\frac{a^{n}-\beta^{n}}{a-\beta} \tag{15}\\
& B_{n}=a^{n}+\beta^{n}
\end{align*}
$$

(16)

$$
\begin{aligned}
B_{n} & =a+p \\
x-d & =0, \text { so that }
\end{aligned}
$$

$$
\begin{equation*}
a=\frac{c+D}{2}, \quad \beta=\frac{c-D}{2}, \quad a+\beta=c, \quad a-\beta=D, \quad D=\sqrt{c^{2}+4 d}, \quad a \beta=-d . \tag{17}
\end{equation*}
$$

From (11) (iii), (15) and (16), we have

$$
\begin{gather*}
\left(a^{n+1}-\beta^{n+1}\right)+\left(a^{n-1}-\beta^{n-1}\right)=(a-\beta)\left(a^{n}+\beta^{n}\right) \\
\left(a^{n-1}-\beta^{n-1}\right)(a \beta+1)=0 \quad \text { on simplification } \\
\left.a \beta+1=0 \quad \because \quad a^{n-1}-\beta^{n-1} \neq 0 \quad \text { (i.e., } a \neq \beta\right) \\
d=1 \quad \because \quad a \beta=-d \quad \text { by (17). } \tag{18}
\end{gather*}
$$

Thus, the required condition is $d=1$ with c unrestricted.
Consequently, there are infinitely many pairs of sequences $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ having the properties:
$(11)^{\prime}$

$$
\begin{cases}\text { (i) } & A_{0}=0, \quad A_{1}=1, \quad A_{n+2}=c A_{n+1}+A_{n} \quad(c \neq 0) \\ \text { (ii) } & B_{0}=2, \quad B_{1}=c, \quad B_{n+2}=c B_{n+1}+B_{n} \\ \text { (iii) } & A_{n+1}+A_{n-1}=B_{n} .\end{cases}
$$

Their Binet forms (15) and (16) now involve
$(17)^{\prime}$

$$
a=\frac{c+D}{2}, \quad \beta=\frac{c-D}{2}, \quad a+\beta=c, \quad a-\beta=D, \quad D=\sqrt{c^{2}+4}, \quad a \beta=-1,
$$

where α, β are now the roots of $x^{2}-c x-1=0$.
Some terms of these sequences are:
(19)

	\cdots	$n=-3$	-2	-1	0	1	2	3	4	\cdots
A_{n}	\cdots	$c^{2}+1$	$-c$	1	0	1	c	$c^{2}+1$	$c^{3}+2 c$	\cdots
B_{n}	\cdots	$-\left(c^{3}+3 c\right)$	$c^{2}+2$	$-c$	2	c	$c^{2}+2$	$c^{3}+3 c$	$c^{4}+4 c+2$	\cdots

Generating functions for these sequences are

$$
\begin{gather*}
\sum_{n=1}^{\infty} A_{n} x^{n}=x\left(1-c x-x^{2}\right)^{-1} \tag{21}\\
\sum_{n=0}^{\infty} B_{n} x^{n}=(2-c x)\left(1-c x-x^{2}\right)^{-1}
\end{gather*}
$$

The Theorems given in Serkland [5] follow directly for $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ by employing his methods, though in Theorems 1, 2, 3 use of the Binet forms (15) and (16) with (17)' produces the results without difficulty.
Following Serkland's numbering [5], we have these generalized theorems:
Theorem 1.

$$
\begin{aligned}
& A_{n} B_{m}+A_{n-1} B_{m-1}=B_{m+n-1} \\
& A_{n} A_{m}+A_{n-1} A_{m-1}=A_{m+n-1}
\end{aligned}
$$

Theorem 2.
Theorem 3. $\quad B_{m} B_{n}+B_{m-1} B_{n-1}=B_{m+n}+B_{m+n-2}=\left(c^{2}+4\right) A_{m+n-1}$
Theorem 4.

$$
A_{p} A_{q} B_{r}=\sum_{k=0}^{q-1}\left(A_{k+1} B_{p+k+r-k}-A_{p+k+1} B_{q+r-k}\right)
$$

Theorem 5. $\quad A_{p} A_{q} A_{r}=\sum_{k=0}^{r-1}\left(A_{p+q+r-k} A_{k+1}-A_{p+k+1} A_{q+r-k}\right)$
Theorem 6. $\quad A_{p} B_{q} B_{r}=\sum_{k+0}^{p-1}\left(\left(c^{2}+4\right) A_{q+r+k+1} A_{p-k}-B_{q+k+1} B_{p+r-k}\right)$
Theorem 7. $B_{p} B_{q} B_{r}=\left(c^{2}+4\right)\left[\sum_{k=0}^{p-2}\left(A_{q+r+k+1} B_{p-k}-A_{p+r-k} B_{q+k+1}\right)+c A_{p+q+r}\right]$

$$
-c B_{p+q} B_{r+1}
$$

Of these theorems, we prove only the second part of Theorem 3 and all of Theorem 7 (taking the opportunity to correct some typographical errors in the original). A neater form for the expression of Theorem 3 (second part) is

$$
B_{n+1}+B_{n-1}=\left(c^{2}+4\right) A_{n}
$$

which should be compared with 11 (iii).
Proof of The orem 3 (second part).

$$
\begin{aligned}
B_{m+n}+B_{m+n-2} & =\left(A_{m+n+1}+A_{m+n-1}\right)+\left(A_{m+n-1}+A_{m+n-3}\right) \text { by (11)' (iii) } \\
& =A_{m+n+1}+2 A_{m+n-1}+A_{m+n-3} \\
& =\left(c A_{m+n}+A_{m+n-1}\right)+2 A_{m+n-1}+A_{m+n-3} \quad \text { by (11)' (i) } \\
& =c A_{m+n}+3 A_{m+n-1}+A_{m+n-3} \\
& =c\left(c A_{m+n-1}+A_{m+n-2}\right)+3 A_{m+n-1}+A_{m+n-3} \quad \text { by (11)' (i) } \\
& =\left(c^{2}+3\right) A_{m+n-1}+\left(c A_{m+n-2}+A_{m+n-3}\right) \\
& =\left(c^{2}+4\right) A_{m+n-1} \quad \text { by (11)' (i). }
\end{aligned}
$$

Proof of Theorem 7.

$$
\begin{aligned}
B_{p} B_{q} B_{r}= & \left(A_{p+1}+A_{p-1}\right) B_{q} B_{r} \\
= & A_{p+1} B_{q} B_{r}+A_{p-1} B_{q} B_{r}=\sum_{k=0}^{p}\left(\left(c^{2}+4\right) A_{q+r+k+1} A_{p-k+1}-B_{q+k+1} B_{p+r-k+1}\right) \\
& +\sum_{k=0}^{p-2}\left(\left(c^{2}+4\right) A_{q+r+k+1} A_{p-k-1}-B_{q+k+1} B_{p+r-k-1}\right) \quad \text { by Theorem } 6 \\
= & \sum_{k=0}^{p-2}\left[\left(c^{2}+4\right) A_{q+r+k+1}\left(A_{p-k+1}+A_{p-k-1}\right)-B_{q+k+1}\left(B_{p+r-k+1}+B_{p+r-k-1}\right)\right] \\
& +\left(c^{2}+4\right) A_{2} A_{p+q+r}-B_{p+q} B_{r+2}+\left(c^{2}+4\right) A_{1} A_{p+q+r+1}-B_{p+q+1} B_{r+1} \\
= & \sum_{k=0}^{p-2}\left(c^{2}+4\right)\left(A_{q+r+k+1} B_{p-k}-B_{q+k+1} A_{p+r-k}\right) \\
& \left.+\left(c^{2}+4\right)\left(c A_{p+q+r}+A_{p+q+r+1}\right)-\left(B_{p+q} B_{r+2}+B_{p+q+1} B_{r+1}\right)\right\} \text { and Theorem 3 } \\
= & \left(c^{2}+4\right)\left[\sum_{k=0}^{p-2}\left(A_{q+r+k+1} B_{p-k}-B_{q+k+1} A_{p+r-k}\right)+c A_{p+q+r}+A_{p+q+r+1}\right] \\
& -\left(c B_{p+q} B_{r+1}+B_{p+q} B_{r}+B_{p+q+1} B_{r+1}\right)=
\end{aligned}
$$

$$
\begin{aligned}
= & \left(c^{2}+4\right)\left[\sum_{k=0}^{p-2}\left(A_{q+r+k+1} B_{p-k}-A_{p+r-k} B_{q+k+1}\right)+c A_{p+q+r}\right] \\
& -c B_{p+q} B_{r+1} \quad \text { by Theorem } 3 .
\end{aligned}
$$

Putting $c=1$ in Theorems $1-7$ we obtain the theorems of Hansen [1] for the Fibonacci-Lucas pair of sequences. With $c=2$, the theorems of Serkland [5] for the two Pell sequences follow. The forms of Hansen's Theorem 5 and Serkland's Theorem 5 should be compared.
The natural extension of the special cases considered by Hansen [1] and Serkland [5] occurs when $c=3$. Call these sequences $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$, some terms of which are:

	\cdots	$n=-3$	-2	-1	0	1	2	3	4	5	6	\cdots
	\cdots	10	-3	1	0	1	3	10	33	109	360	\cdots
Y_{n}	\cdots	-36	11	-3	2	3	11	36	119	393	1298	\cdots

Theorems $1-7$, and the associated background details, readily apply with $c=3\left(c^{2}+4=13\right)$. Interested readers may construct other pairs of related sequences from the infinitely many possibilities manifested in (19) and (20).

CONCLUDING REMARKS

Examples of familiar pairs of sequences which are excluded from our considerations (i.e., for which $d \neq 1$) are
(a) the Fermat sequences $\left\{2^{n}-1\right\},\left\{2^{n}+1\right\} \quad(c=3, d=-2)$
(b) the Chebyshev sequences

$$
\left\{T_{n}=2 \cos n \theta\right\}, \quad\left\{U_{n}=\frac{\sin (n+1) \theta}{\sin \theta}\right\} \quad(c=2 \cos \theta, d=-1) .
$$

(Obviously, in (a), $2^{n}+1=\left(2^{n}-1\right)+2$, i.e., the two Fermat sequences are not independent of each other.)
Comments on the excluded degenerate case which occurs when $a=\beta$, i.e., $D=\sqrt{c^{2}+4 d}=0$, may be found in Horadam [3].

Further information on the Pell sequences, as special cases of the sequence $\left\{W_{n}\right\}$ for which

$$
W_{0}=a, \quad W_{1}=b, \quad W_{n+2}=c W_{n+1}+d W_{n}
$$

(which generalizes (11) (i) and (ii)), is given in Horadam [4]. For a partition of $\left\{W_{n}\right\}$ into Fibonacci-type and Lucas-type sequences the reader is referred to Hilton [2], which is generalized to $r^{\text {th }}$-order sequences by Shannon [6].

REFERENCES

1. R. T. Hansen, "Generating Identities for Fibonacci and Lucas Triples," The Fibonacci Quarterly, Vol. 10, No. 6 (December 1972), pp. 571--578.
2. A. J. W. Hilton, "On the Partition of Horadam's Generalized Sequences into Generalized Fibonacci and Lucas Sequences," The Fibonacci Quarterly, Vol. 12, No. 4 (December 1974), pp. 339-345.
3. A. F. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers," Duke Math. Journal, Vol. 32 (1965), pp. 437-446.
4. A. F. Horadam, "Pell Identities," The Fibonacci Quarterly, Vol. 9, No. 3 (Oct. 1971), pp. 245-252.
5. C. Serkland, "Generating Identities for Pell Triples," The Fibonacci Quarterly, Vol. 12, No. 2 (April 1974), pp. 121-128.
6. A. G. Shannon, "A Generalization of Hilton's Partition of Horadam's Sequences," The Fibonacci Quarterly, to appear.
