SATISFYING THE FIBONACCI DIFFERENCE EQUATION

 $\frac{a^{-2}}{2} < s(a^2u_2 - u_4) < \frac{a^{-1}}{2}$

so that if $y = u_4 + s$ then

Since

$$1 - \frac{a^{-1}}{2} > 0$$
 and $1 - \frac{a^{-2}}{2} = \frac{a}{2}$

 $1-\frac{a^{-1}}{2} < -s(a^2u_2-y) < 1-\frac{a^{-2}}{2}$.

it follows that

$$|a^2u_2-\gamma|<\frac{a}{2}.$$

If there were an integer w such that $|a^2w - y| < \frac{1}{2}$ it would follow that

$$a^2 |u_2 - w| < \frac{1+a}{2} = \frac{a^2}{2}$$

implying that $w = u_2$ and that $y = u_4$, contradicting the fact that $|y - u_4| = 1$. On the other hand, there is an integer $x = y - u_2$ such that $|ax - y| < \frac{1}{2}$ since

$$|ax - y| = |(a - 1)y - au_2| = (a - 1)|y - a^2u_2| < \frac{a(a - 1)}{2} = \frac{1}{2}$$

The existence of x (and the non-existence of w) satisfying these conditions, implies that $y = v_2$ for some $v \in S$. Thus,

$$|a^2u_2 - v_2| < \frac{a}{2}$$
.

We now find

$$|u_2 - v_0| = |u_2 + v_1 - v_2| \le |v_2 a^{-2} - u_2| + |v_2 (1 - a^{-2}) - v_1|$$

= $a^{-2}(|v_2 - a^2 u_2| + |v_2 a - a^2 v_1|) \le \frac{a^{-1}}{2} + \frac{a^{-1}}{2} = a^{-1} \le 1$

so that $u_2 = v_0 \in S_0$.

Combining the results of Lemmas 3, 4, 5 we have

Theorem.

$$S_0 = S_1 \cup S_2 .$$

A GOLDEN DOUBLE CROSTIC: SOLUTION

MARJORIE BICKNELL-JOHNSON Wilcox High School, Santa Clara, California 95051

"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel." J. Kepler. Quotation given in *The Divine Proportion* by Huntley (Dover, New York, 1970, p. 23).

1978]

83