$$
\frac{a^{-2}}{2}<s\left(a^{2} u_{2}-u_{4}\right)<\frac{a^{-1}}{2}
$$

so that if $y=u_{4}+s$ then

$$
1-\frac{a^{-1}}{2}<-s\left(a^{2} u_{2}-y\right)<1-\frac{a^{-2}}{2}
$$

Since

$$
1-\frac{a^{-1}}{2}>0 \quad \text { and } \quad 1-\frac{a^{-2}}{2}=\frac{a}{2}
$$

it follows that

$$
\left|a^{2} u_{2}-v\right|<\frac{a}{2}
$$

If there were an integer w such that $\left|a^{2} w-y\right|<1 / 2$ it would follow that

$$
a^{2}\left|u_{2}-w\right|<\frac{1+a}{2}=\frac{a^{2}}{2}
$$

implying that $w=u_{2}$ and that $y=u_{4}$, contradicting the fact that $\left|y-u_{4}\right|=1$. On the other hand, there is an integer $x=y-u_{2}$ such that $|a x-y|<1 / 2$ since

$$
|a x-y|=\left|(a-1) y-a u_{2}\right|=(a-1)\left|y-a^{2} u_{2}\right|<\frac{a(a-1)}{2}=\frac{1}{2}
$$

The existence of x (and the non-existence of w) satisfying these conditions, implies that $y=v_{2}$ for some $v \in S$. Thus,

$$
\left|a^{2} u_{2}-v_{2}\right|<\frac{a}{2}
$$

We now find

$$
\begin{aligned}
\left|u_{2}-v_{0}\right| & =\left|u_{2}+v_{1}-v_{2}\right| \leqslant\left|v_{2} a^{-2}-u_{2}\right|+\left|v_{2}\left(1-a^{-2}\right)-v_{1}\right| \\
& =a^{-2}\left(\left|v_{2}-a^{2} u_{2}\right|+\left|v_{2} a-a^{2} v_{1}\right|\right)<\frac{a^{-1}}{2}+\frac{a^{-1}}{2}=a^{-1}<1
\end{aligned}
$$

so that $u_{2}=v_{0} \in S_{0}$.
Combining the results of Lemmas $3,4,5$ we have
Theorem.

$$
S_{0}=S_{1} \cup S_{2}
$$

A GOLDEN DOUBLE CROSTIC: SOLUTION

MARJORIE BICKNELL-JOHNSON

Wilcox High School, Santa Clara, California 95051
"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel." J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23).

