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1. INTRODUCTION

A sequence {si}‘f of positive integers is termed complete if every positive integer &/ can be expressed as a
distinct sum of terms from the sequence; it is well known ([1], Theorem 1) that if {si}f is nondecreasing
with 57 = 1, then a necessary and sufficient condition for completeness is

n

(1) Sprr < T+ 35 forn > 1.
1

Using this criterion for completeness, we will exhibit several transformations which convert a given complete
sequence of positive integers into another sequence of positive integers without destroying completeness. Since
the Fibonacci numbers (F; = F,=1, F, ;11 = F, + F,_1 for n > 2) and the sequence of primes with unity ad-
joined (Py =1, P, =2 3,57 11,13, 17, - ) are examples of complete sequences, our results will yield as
special cases some new complete sequences associated with the Fibonacci numbers and the primes.

2. QUANTIZED LOGARITHMIC TRANSFORMATION
Let /x/ denote the greatest integer contained in x, and define the function <-> by
<x> = 1+ [x] forall real x.

Thus <x> is the least integer >x in contrast to [x/, the greatest integer <x. Both <.> and [-] may be thought
of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately fol-
lowing x in the case of <«> orto the integer immediately preceding x when [-] is used. If x is an integer, then
[x] =x and <x> =1 + x. The following lemma shows that <.> is subadditive:

Lemma 1. AFY> < <X>F <Y,
Proof. 1fx=[x] +n.andy = [y] +n, with0 <ny, ny, < 1,then
xHy> = <[X]+ly] +netny> < I +ly] +2 = 1+ L] +ly] +1 = <x>+<y>.
Lemma 2. LetIn x denote the natural logarithm of x. Then forx, y > 2,
Infx+y) < lnx+Iny

that is, the logarithm is subadditive on the domain [2, = ).

Proof. Forxy > 2,

x+y < 2-max(x,y)<min(xy) max (xy) = xy,

and In (x +y) <In(xy)=Inx +Iny, from the nondecreasing property of the logarithm.

Theorem 1.  Let {s;}7 be a strictly increasing, complete sequence of positive integers. Then the se-
quence {<In s;>}% is also complete.

Proof. By the assumed completeness,
: 19
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n
Suer < 1+ ) s forn > 1.
1
Since s7 = 1, we may write
n
Sprt <2+ 95 for n = 1;
2
hence,
n
Ins,.; < In(2+ > s,') ,
2

and, on noting s; > 2 for/ > 2, it follows from Lemma 2 (by induction) that
n
INsupr < IN2+ 3 Ins;.
2

Now we may use the nondecreasing and subadditive (lemma 1) properties of <-> to conclude

n n n
<Ins,pq> <<\r\2+ > Ins1> < <n2>+ Y <nsp> = 1+y_ <Ins;> for n > 2
2

2 2

Hence (noting <In s> = <In 2> = 1) by the completeness criterion, the sequence {<|n si>}§° is complete,
proving the theorem,

The following theorem vyields a similar conclusion for a class of functions ¢pwhere each ¢ possesses proper-
ties similar to that of the logarithmic function.

Theorem 2. Let {si}T be a nondecreasing complete sequence of positive integers and let ¢(-) be a func-
tion defined on the domain x > 1, nondecreasing and subadditive on that domain with 0 < ¢(1) < 1. Then
{<¢(s;)>) 7 is complete.

Proof. From
Sn+1 < 7*% Si
it follows that 1
Alsyr1) < ¢(7+ ‘Z‘ s,-) < of1)+ Zn: ofs;).
o 1 1
<Plsy41)> < <¢>(7)>+Zn <@fs;)> = 1+ f <ofs;)>,
1 1

so that, with <¢(1)> = 1 and the completeness criterion, the sequence {¢(s,')}2° is complete.

NOTE. Thearem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on [1, «). It is
also clear that the domain of ¢ could be restricted to only those integers lying in [1, ).

EXAMPLE. If ¢fx) = /x — 1/2 for x > 1, the reader may easily verify that ¢ is nondecreasing, subadditive
and 0 < ¢(1) = /1/2 < 1. Therefore {</5; — 1/2>} 7 is complete whenever {s;}7" is a nondecreasing com-
plete sequence of positive integers.

EXAMPLE. The function ¢(x) = ax for x > 1 and some fixed a > 0 is nondecreasing and subadditive, and if
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0 <a< 1,then ¢(1) = aand ¢ satisfies the conditions of Theorem 2. Thus, for example, the sequence
AN
{\2 /}1

is complete whenever {si}m is a nondecreasing complete sequence of positive integers.

EXAMPLE: IfP;=1,P»=2,3,5,7, 11, --- denotes the sequence of primes (with unity adjoined); then it is
well known (2] that {#;}7 is complete. Hence by Theorem 1, the sequence {<In £;>}3 is also complete,
and thus each positive integer / has an expansion of the form

N = Z a;<InP;>,
2

where each a; is binary (zero or one). The series is clearly finite, since a; = 0 for/ > k, where & is such that
<In P> exceeds /V.

It is of interest to prove the completeness of {<In Pi>}5° directly without using the completeness of {Pi}f.
In this manner, we avoid the implicit use of Bertrand’s postulate which is normally invoked in showing the
primes are complete.

Theorem 3. The sequence {<InP;>}3 is complete.

Proof.,  Using Euler’s classical argument, we observe that
n
7+ I1 A
2
is not divisible by Py, Py, -+, P,, and therefore must have a prime divisor larger than P,, ; that is

n
7+n P; > Pyt
2

or
n n
Poer <1+ 1 Pi<2 [] P for n>1.
1 1

Since the logarithm is an increasing function,

n
NPy < In2+ 3 InP

1
and consequently,
n n
NP> < <n2>+ 3, <nPi>=1+3, <InP>
1 1

establishing the result by the completeness criterion.

3. LUCAS TRANSFORMATION

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds
to the manner in which the Lucas sequence is generated from the Fibonacci sequence.

Theorem 4. Let {u;}7 be a nondecreasing complete sequence with vy = u, = 7. Define a sequence
{vi}5 by

Vo = 1

vi = 2

Vy = Up_1 * Un+t for n > 2.

Then {v;}5 is complete.
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Proof. Forn > 1,
n-1 n+1
Va+1 = UptlUys2 < 7+Z U,’+7+Z u; = (Uppq *Fty_1) +luy +Uy_g) + - +{uz+ug) +up+ug+2
1 1

n
= VgtV g F otV FUR UL D S Vg etV Ry Ryt ] S TF D Y,
0

where we have used vy +uy +2 = 4 = vy +vg+ 1. Thusvg = 7 and
n
Va1 < T4 Z Vi
0

for n = 0 which implies that {v,-}E’ is complete.
EXAMPLE: Letu; = F;, where { F;} is the Fibonacci sequence. Then the sequence defined by
vo=1 wvi=2 v, =F,_1+F,+; fTorn>2

is complete by Theorem 4. Moreover, recalling that the Lucas numbers {Ln}?f, defined by

Lop=2 Ly=1 Lyyy=1L,+L, 4 forn =1,
are also expressible by

L, =F,_1+F,pp forn > 2,

we see that {v,,}?f is simply the sequence {Ln]c[f put in nondecreasing order by an interchange of Ly and L.

Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for com-
pleteness must be applied only to nondecreasing sequences.

4. SUMMARY

If § denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain
transformations which map S into itself. In particular, it was shown, as special cases of the general results, that
the sequences{<in F,J5, {<in P,>}5 and{<aF,>}5 are complete sequences, where <-> is defined by <x> =7 +
Ix], {F,} =¢{1,1,2,3,5,..) is the Fibonacci sequence, {7, } = {1,2,3,5,7, 11, -} is the sequence of
primes with unity adjoined and a is a fixed constant satisfying 0 < a < 1.
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