
SOME SEQUENCE-TO-SEQUENCE TRANSFORMATIONS 
WHICH PRESERVE COMPLETENESS 

J. L. BROWN, JR. 
The Pennsylvania State University, State College, Pennsylvania 16801 

1. INTRODUCTION 

A sequence {s{}Y of positive integers is termed complete if every positive integer N can be expressed as a 
distinct sum of terms from the sequence; it is well known ( [1 ] , Theorem 1) that if {s;}7 is nondecreasing 
with Sf = 1, then a necessary and sufficient condition for completeness is 

n 
(1) sn+1 < 1 + ^ S{ for /? > /. 

1 

Using this criterion for completeness, we will exhibit several transformations which convert a given complete 
sequence of positive integers into another sequence of positive integers without destroying completeness. Since 
the Fibonacci numbers (F± = F2= 1, Fn+l = Fn + Fn-l f ° r / 7 >2) and the sequence of primes with unity ad-
joined (Pi = 1, ?2 = 2, 3, 5, 7, 11, 13, 17, •••) are examples of complete sequences, our results will yield as 
special cases some new complete sequences associated with the Fibonacci numbers and the primes. 

2. QUANTIZED LOGARITHMIC TRANSFORMATION 

Let fx] denote the greatest integer contained \nx, and define the function <•> by 

<x> = 1 + [x] for all real x. 

Thus <x> is the least integer >x in contrast to fx], the greatest integer <x. Both <•> and [»] may bethought 
of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately fol-
lowingxinthecase of <•> orto the integer immediately precedingx when [•] is used. If x is an integer, then 
fx] = x and <x> = 1 + x. The following lemma shows that <•> is subadditive: 

Lemma 7. <x + y> < <x> + <y>. 

Proof. \ix = [x] +r\x and / = [y] +r}y with 0 <r)x, r\y < 1,then 

<x +y> = <[x] + fy] +Vx + Vy> < M + [yl +2 = 1 + [x] + [y] + 1 = <x> + <y>. 

Lemma 2. Let In x denote the natural logarithm ofx. Then forx, y > 2, 

\n(x + y) < \nx + \x\y 

that is, the logarithm is subadditive on the domain [2, °°). 

Proof. Forx,/ ;>, 2, 

x + y < 2 • max (xfy) < min (x,y) max (x,y) = xy, 

and In (x + y) < In (xy) = In x + In y, from the nondecreasing property of the logarithm. 

Theorem 7. Let {s{}Y be a strictly increasing, complete sequence of positive integers. Then the se-
quence {<ln £ ; > } J is also complete. 

By the assumed completeness, 
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Since s^ = 1, we may write 

hence, 

sn+l < 1+ 23 si for n > ]. 
1 

n 
sn+l < 2+ 23 si for /? > 1; 

2 

x 2 
and, on noting ^ > 2 for / > 2, it follows from Lemma 2 (by induction) that 

n 
\nsn+i < In,?* 23 m*/-

2 

Now we may use the nondecreasing and subadditive (lemma 1) properties of <•> to conclude 

<' n v n n 

\ 2 / 2 2 
Hence (noting <ln S2> = <ln 2> = 1) by the completeness criterion, the sequence { < l n ^ > } J i s complete, 
proving the theorem, 

The following theorem yields a similar conclusion for a class of functions 0where each 0 possesses proper-
ties similar to that of the logarithmic function. 

Theorem 2. Let {SJ}Y be a nondecreasing complete sequence of positive integers and let 0(-) be a func-
tion defined on the domain x > 1, nondecreasing and subadditive on that domain with 0 < 0(1) < 1. Then 
{ < 0 f e ) > ) 7 is complete. 
Proof. From 

n 
Sn+l < 1+ 23 S{, 

1 
it follows that 

/ n \ n 
(t>(sn+i) < 0f 1+ 23 *) < 4>(v+ £ <t>(*0-

Then 
n n 

«p(sn+1)> < <(p(7h+Yl <(p(s{)> =i+ 23 «t>(sO> * 
i i 

so that, with <0(1)> = 1 and the completeness criterion, the sequence { 0 / ^ ) 7 is complete. 
NOTE. Theorem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on [1 , °°). It is 

also clear that the domain of 0 could be restricted to only those integers lying in [1 , 4>). 

EXAMPLE. If 0 M = yjx - 1/2 forx > 1, the reader may easily verify that 0 is nondecreasing, subadditive 
and 0 < 0(1) = V / 2 < 1. Therefore {<y/sj - 1/2>} Y is complete whenever {s{}f is a nondecreasing com-
plete sequence of positive integers. 

EXAMPLE. The function (j>(x) = ax forx > 1 and some fixed a > 0 is nondecreasing and subadditive, and if 
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0 <a< 1, then 0(1) = a and 0 satisfies the conditions of Theorem 2. Thus, for example, the sequence 

is complete whenever {$/}? is a nondecreasing complete sequence of positive integers. 
EXAMPLE: If P\ = 1, ?2 = 2, 3, 5, 7, 11, ••• denotes the sequence of primes (with unity adjoined); then it is 

well known [2] that \P\Si is complete. Hence by Theorem 1, the sequence {<ln P{>}^ is also complete, 
and thus each positive integer N has an expansion of the form 

oo 

N = 1L a{<\nPi> , 
2 

where each a; is binary (zero or one). The series is clearly finite, since az- = 0 for/ > k, where k is such that 
< lnP^> exceeds N. 

It is of interest to prove the completeness of {<ln /*/>} J directly without using the completeness of {Pj}T-
In this manner, we avoid the implicit use of Bertrand's postulate which is normally invoked in showing the 
primes are complete. 

Theorem 3. The sequence {<ln P{>} J is complete. 

Proof. Using Euler's classical argument, we observe that 

1+ l\Pi 
2 

is not divisible by Pi, P2, —, Pn and therefore must have a prime divisor larger than Pn ; that is 

1+I[ Pi> Pn+l , 
2 

or 
n n 

Pn+1 < 1+ Yl P i < 2 II Pi f0r n > 7 ' 
1 1 

Since the logarithm is an increasing function, 
n 

\nPn+1 < In 2+ X) lnPi 
1 

and consequently, 
n n 

<\nPn+1> < <ln2>+ 2 <\nP(> = 1+ £ < l n ^ > 
i i 

establishing the result by the completeness criterion. 

3. LUCAS TRANSFORMATION 

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds 
to the manner in which the Lucas sequence is generated from the Fibonacci sequence. 

Theorem 4. Let {u{}Y be a nondecreasing complete sequence with m = U2 = 1. Define a sequence 
Mo by 

fv0 = 1 
< \f\ = 2 

vn - un_i + un+i for n > 2. 

Then {i/;}cT is complete. 
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Proof. For n > 1, 
n-l n+1 

vn+l = Un+Un+2 < 1 + J2 Ui + 1 + lL, U{ = (un+1 + Un_i> + (un+ Un_2) + >~ + (u3 +Ui) + U2 + U1+2 
1 1 

n 
= Vn+Vn_1 + -+V2+U2+U1+2 = Vn+Vn-i +«- + V2+Vl+V0+1 = 1 + Yl Vi > 

0 

where we have used u2 + Ui +2 = 4 = Vi+vo+1. Thus VQ = 1 and 
n 

vn+i < / + L n 
0 

for/7 > 0 which implies that {i/;)(T is complete. 
EXAMPLE: Let Uj = F{, where {F{}Y is the Fibonacci sequence. Then the sequence defined by 

v0 = 1, Vi = 2, vn = Fn_i +Fn+1 for n > 2 
is complete by Theorem 4. Moreover, recalling that the Lucas numbers \in} 'Q, defined by 

L0 = 2, Li = 1, Ln+1 = Ln + Ln_i for n > \, 
are also expressible by 

Ln = Fn-1 +Fn+2 ^ r n > 2, 

we see that {\/n}^ is simply the sequence { / . n } ^ put in nondecreasing order by an interchange of LQ and Li. 
Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for com-
pleteness must be applied only to nondecreasing sequences. 

4. SUMMARY 

If S denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain 
transformations which map S into itself. In particular, it was shown, as special cases of the general results, that 
the sequences{<ln FytfJ, f<in P^$ a n d f ^ z f ^ J are complete sequences, where <•> is defined by <x> = 1 + 
tx],{Fn) = r { l , 1,2, 3, 5, •••} is the Fibonacci sequence, {Pn} = { 1, 2, 3, 5, 7 ,11, •••} is the sequence of 
primes with unity adjoined and a is a fixed constant satisfying 0 < a < 1. 
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