SOME SEQUENCE-TO-SEQUENCE TRANSFORMATIONS WHICH PRESERVE COMPLETENESS

J. L. BRAWN, JR.

The Pennsylvania State University, State College, PennsyIvania 16801

1. INTRODUCTION

A sequence $\left\{s_{i}\right\}_{1}^{\infty}$ of positive integers is termed complete if every positive integer N can be expressed as a distinct sum of terms from the sequence; it is well known ([1], Theorem 1) that if $\left\{s_{i}\right\}_{1}^{\infty}$ is nondecreasing with $s_{1}=1$, then a necessary and sufficient condition for completeness is

$$
\begin{equation*}
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i} \quad \text { for } n \geqslant 1 \tag{1}
\end{equation*}
$$

Using this criterion for completeness, we will exhibit several transformations which convert a given complete sequence of positive integers into another sequence of positive integers without destroying completeness. Since the Fibonacci numbers ($F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ for $n \geqslant 2$) and the sequence of primes with unity adjoined ($P_{1}=1, P_{2}=2,3,5,7,11,13,17, \cdots$) are examples of complete sequences, our results will yield as special cases some new complete sequences associated with the Fibonacci numbers and the primes.

2. QUANTIZED LOGARITHMIC TRANSFORMATION

Let $[x]$ denote the greatest integer contained in x, and define the function $<\cdot>$ by

$$
\langle x\rangle=1+[x] \quad \text { for all real } x .
$$

Thus $\langle x\rangle$ is the least integer $\rangle x$ in contrast to $[x]$, the greatest integer $\leqslant x$. Both $<\cdot\rangle$ and $[\cdot]$ may be thought of as quantizing characteristics in the sense that a non-integral x is rounded off to the integer immediately following x in the case of $\langle\cdot\rangle$ or to the integer immediately preceding x when [.] is used. If x is an integer, then $[x]=x$ and $\langle x\rangle=1+x$. The following lemma shows that $\langle\cdot\rangle$ is subadditive:
Lemma 1. $\langle x+y\rangle \leqslant\langle x\rangle+\langle y\rangle$.
Proof. If $x=[x]+\eta_{x}$ and $y=[y]+\eta_{y}$ with $0 \leqslant \eta_{x}, \eta_{y}<1$, then

$$
\langle x+y\rangle=\left\langle[x]+[y]+\eta_{x}+\eta_{y}\right\rangle \leqslant[x]+[y]+2=1+[x]+[y]+1=\langle x\rangle+\langle y\rangle
$$

Lemma 2. Let $\ln x$ denote the natural logarithm of x. Then for $x, y \geqslant 2$,

$$
\ln (x+y) \leqslant \ln x+\ln y
$$

that is, the logarithm is subadditive on the domain $[2, \infty)$.

$$
\begin{aligned}
& \text { Proof. For } x, y \geqslant 2, \\
& \qquad x+y \leqslant 2 \cdot \max (x, y) \leqslant \min (x, y) \max (x, y)=x y,
\end{aligned}
$$

and $\ln (x+y) \leqslant \ln (x y)=\ln x+\ln y$, from the nondecreasing property of the logarithm.
Theorem 1. Let $\left\{s_{i}\right\}_{1}^{\infty}$ be a strictly increasing, complete sequence of positive integers. Then the sequence $\left\{\left\langle\ln s_{i}\right\rangle\right\}_{2}^{\infty}$ is also complete.

Proof. By the assumed completeness,

$$
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i} \quad \text { for } n \geqslant 1
$$

Since $s_{1}=1$, we may write

$$
s_{n+1} \leqslant 2+\sum_{2}^{n} s_{i} \quad \text { for } n \geqslant 1
$$

hence,

$$
\ln s_{n+1} \leqslant \ln \left(2+\sum_{2}^{n} s_{i}\right)
$$

and, on noting $s_{i} \geqslant 2$ for $i \geqslant 2$, it follows from Lemma 2 (by induction) that

$$
\ln s_{n+1} \leqslant \ln 2+\sum_{2}^{n} \ln s_{i}
$$

Now we may use the nondecreasing and subadditive (lemma 1) properties of $<\cdot>$ to conclude

$$
\left.\left.\left\langle\ln s_{n+1}\right\rangle \leqslant\left\langle\ln 2+\sum_{2}^{n} \ln s_{i}\right\rangle \leqslant<\ln 2\right\rangle+\sum_{2}^{n}\left\langle\ln s_{i}\right\rangle=1+\sum_{2}^{n}<\ln s_{i}\right\rangle \text { for } n \geqslant 2 .
$$

Hence (noting $\left.<\ln s_{2}\right\rangle=<\ln 2>=1$) by the completeness criterion, the sequence $\left\{\left\langle\ln s_{i}\right\rangle\right\}_{2}^{\infty}$ is complete, proving the theorem.

The following theorem yields a similar conclusion for a class of functions ϕ where each ϕ possesses properties similar to that of the logarithmic function.
Theorem 2. Let $\left\{s_{i}\right\}_{1}^{\infty}$ be a nondecreasing complete sequence of positive integers and let $\phi(\cdot)$ be a function defined on the domain $x \geqslant 1$, nondecreasing and subadditive on that domain with $0 \leqslant \phi(1)<1$. Then $\left.\left\{<\phi\left(s_{i}\right)\right\rangle\right\}_{1}^{\infty}$ is complete.
Proof. From

$$
s_{n+1} \leqslant 1+\sum_{1}^{n} s_{i}
$$

it follows that

$$
\phi\left(s_{n+1}\right) \leqslant \phi\left(1+\sum_{1}^{n} s_{i}\right) \leqslant \phi(1)+\sum_{1}^{n} \phi\left(s_{i}\right)
$$

Then

$$
\left.<\phi\left(s_{n+1}\right)>\leqslant\langle\phi(1)\rangle+\sum_{1}^{n}<\phi\left(s_{i}\right)\right\rangle=1+\sum_{1}^{n}\left\langle\phi\left(s_{i}\right)>\right.
$$

so that, with $\langle\phi(1)\rangle=1$ and the completeness criterion, the sequence $\left\{\phi\left(s_{i}\right)\right\}_{1}^{\infty}$ is complete.
NOTE. Theorem 1 is not a special case of Theorem 2 since the logarithm is not subadditive on $[1, \infty)$. It is also clear that the domain of ϕ could be restricted to only those integers lying in [1, ${ }^{\circ}$).
EXAMPLE. If $\phi(x)=\sqrt{x-1 / 2}$ for $x \geqslant 1$, the reader may easily verify that ϕ is nondecreasing, subadditive and $0 \leqslant \phi(1)=\sqrt{1 / 2}<1$. Therefore $\left\{<\sqrt{s_{i}-1 / 2}>\right\}_{1}^{\infty}$ is complete whenever $\left\{s_{i}\right\}_{1}^{\infty}$ is a nondecreasing complete sequence of positive integers.

EXAMPLE. The function $\phi(x)=a x$ for $x \geqslant 1$ and some fixed $a>0$ is nondecreasing and subadditive, and if
$0<a<1$, then $\phi(1)=a$ and ϕ satisfies the conditions of Theorem 2 . Thus, for example, the sequence

$$
\left\{\left\langle\frac{s_{i}}{2}\right\rangle\right\}_{1}^{\infty}
$$

is complete whenever $\left\{s_{i}\right\}_{1}^{\infty}$ is a nondecreasing complete sequence of positive integers.
EXAMPLE: If $P_{1}=1, P_{2}=2,3,5,7,11, \cdots$ denotes the sequence of primes (with unity adjoined); then it is well known [2] that $\left\{P_{i}\right\}_{1}^{\infty}$ is complete. Hence by Theorem 1, the sequence $\left\{\left\langle\ln P_{i}\right\rangle\right\}_{2}^{\infty}$ is also complete, and thus each positive integer N has an expansion of the form

$$
N=\sum_{2}^{\infty} a_{i}<\ln P_{i}>
$$

where each a_{i} is binary (zero or one). The series is clearly finite, since $a_{i}=0$ for $i \geqslant k$, where k is such that $<\ln P_{k}>$ exceeds N.

It is of interest to prove the completeness of $\left\{<\ln P_{i}>\right\}_{2}^{\infty}$ directly without using the completeness of $\left\{P_{i}\right\}_{1}^{\infty}$. In this manner, we avoid the implicit use of Bertrand's postulate which is normally invoked in showing the primes are complete.
Theorem 3. The sequence $\left\{<\ln P_{i}>\right\}_{2}^{\infty}$ is complete.
Proof. Using Euler's classical argument, we observe that

$$
1+\prod_{2}^{n} P_{i}
$$

is not divisible by $P_{1}, P_{2}, \cdots, P_{n}$ and therefore must have a prime divisor larger than P_{n}; that is

$$
1+\prod_{2}^{n} P_{i} \geqslant P_{n+1}
$$

or

$$
P_{n+1} \leqslant 1+\prod_{1}^{n} P_{i} \leqslant 2 \prod_{1}^{n} P_{i} \text { for } n \geqslant 1
$$

Since the logarithm is an increasing function,

$$
\ln P_{n+1} \leqslant \ln 2+\sum_{1}^{n} \ln P_{i}
$$

and consequently,

$$
\left.\left\langle\ln P_{n+1}\right\rangle \leqslant<\ln 2\right\rangle+\sum_{1}^{n}\left\langle\ln P_{i}\right\rangle=1+\sum_{1}^{n}\left\langle\ln P_{i}\right\rangle
$$

establishing the result by the completeness criterion.

3. LUCAS TRANSFORMATION

The transformation defined in the following theorem is called a Lucas Transformation since it corresponds to the manner in which the Lucas sequence is generated from the Fibonacci sequence.
Theorem 4. Let $\left\{u_{i}\right\}_{1}^{\infty}$ be a nondecreasing complete sequence with $u_{1}=u_{2}=1$. Define a sequence $\left\{v_{i}\right\}_{0}^{\infty}$ by

$$
\left\{\begin{array}{l}
v_{0}=1 \\
v_{1}=2 \\
v_{n}=u_{n-1}+u_{n+1} \quad \text { for } n \geqslant 2
\end{array}\right.
$$

Then $\left\{v_{i}\right\}_{0}^{\infty}$ is complete.

Proof. For $n \geqslant 1$,

$$
\begin{aligned}
v_{n+1} & =u_{n}+u_{n+2} \leqslant 1+\sum_{1}^{n-1} u_{i}+1+\sum_{1}^{n+1} u_{i}=\left(u_{n+1}+u_{n-1}\right)+\left(u_{n}+u_{n-2}\right)+\ldots+\left(u_{3}+u_{1}\right)+u_{2}+u_{1}+2 \\
& =v_{n}+v_{n-1}+\ldots+v_{2}+u_{2}+u_{1}+2=v_{n}+v_{n-1}+\ldots+v_{2}+v_{1}+v_{0}+1=1+\sum_{0}^{n} v_{i},
\end{aligned}
$$

where we have used $u_{2}+u_{1}+2=4=v_{1}+v_{0}+1$. Thus $v_{0}=1$ and

$$
v_{n+1} \leqslant 1+\sum_{0}^{n} v_{i}
$$

for $n \geqslant 0$ which implies that $\left\{v_{i}\right\}_{0}^{\infty}$ is complete.
EXAMPLE: Let $u_{i}=F_{i}$, where $\left\{F_{i}\right\}_{1}^{\infty}$ is the Fibonacci sequence. Then the sequence defined by

$$
v_{0}=1, \quad v_{1}=2, \quad v_{n}=F_{n-1}+F_{n+1} \quad \text { for } n \geqslant 2
$$

is complete by Theorem 4. Moreover, recalling that the Lucas numbers $\left\{L_{n}\right\}_{0}^{\infty}$, defined by

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n+1}=L_{n}+L_{n-1} \quad \text { for } n \geqslant 1,
$$

are also expressible by

$$
L_{n}=F_{n-1}+F_{n+2} \quad \text { for } n \geqslant 2
$$

we see that $\left\{v_{n}\right\}_{0}^{\infty}$ is simply the sequence $\left\{L_{n}\right\}_{0}^{\infty}$ put in nondecreasing order by an interchange of L_{0} and L_{1}. Completeness is not affected by a renumbering of the sequence; however, the inequality criterion for completeness must be applied only to nondecreasing sequences.

4. SUMMARY

If S denotes the set of all nondecreasing complete sequences of positive integers, we have considered certain transformations which map S into itself. In particular, it was shown, as special cases of the general results, that the sequences $\left\{\left\langle\ln F_{n}\right\rangle_{3}^{\infty},\left\{\left\langle\ln P_{n}\right\rangle\right\}_{2}^{\infty}\right.$ and $\left\{\left\langle a F_{n}\right\}_{2}^{\infty}\right.$ are complete sequences, where $\langle\cdot\rangle$ is defined by $\langle x\rangle=1+$ $[x],\left\{F_{n}\right\}=r\{1,1,2,3,5, \cdots\}$ is the Fibonacci sequence, $\left\{P_{n}\right\}=\{1,2,3,5,7,11, \cdots\}$ is the sequence of primes with unity adjoined and a is a fixed constant satisfying $0<a<1$.

REFERENCES

1. J. L. Brown, Jr., "Note on Complete Sequences of Integers," American Math. Monthly, Vol. 68, No. 6, June-July, 1961, pp. 557-560.
2. V.E. Hoggatt, Jr., and Bob Chow, "Some Theorems on Completeness," The Fibonacci Quarterly, Vol. 10, No. 5, 1972, pp. 551-554.
