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1. INTRODUCTION 
The rows of Pascal's triangle with even subscripts have a middle term 

,2 

*•-[?)-£ Cll.-J-S C) 
h=0 ' k=0 

since 

(fe) = (n-k) 

for 0 < k < n. We shall now derive the generating function 

Fronn 

one easily gets 

From 

so that by differention 

From tne relation 

then 

AM = £ Anx" = £ (2
n")x" . 

n=0 n=0 

A I 2n\ = (2n)l 

(n + 1)An+1 = 2(2n + 1)An . 

2. GENERATING FUNCTION 

n+l A(x) = ]T An*n = A0+ 23 An+lx 

n=0 n=0 

xA'(x) = x ] T (n + 1)An+lx
n = X I nAnx

n. 
n=0 n=0 

(n + VAn+i = 2(2n + l)An 

OO OO y OO OO 

A'M s £ (n + VAn+1x
n = £ 2(2n + l)Anx

n = 2[ £ 2(nAn)x
n + "£ Anx

n 

n=0 n=0 \ n=0 n=0 
so that 

•A'M = 2(2xA'(x)+AM). 

Solv i t for>4 'M, one gets, upon dividing hyA(x), 

41 
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AM 
AM (1-4x) 

from which it follows that 
\nAM = -1/2\r\(1-4x) + \nC. 

Thus 

A(x) = — ^ — , 
s/1-4x-

but AQ = A(O) = 1 implies C= 1, so that 
oo 

AM = ' = T Anx
n. 

3. CATALAN NUMBERS 

Suppose you know that the Catalan numbers have the form 

and wish to derive the generating function 
oo 

CM = £ Cnx
n. 

n=0 
Recall that 

n=0 n=0 sJl-4X 

Then 

n=0 n=0 

Thus, if we integrate the series for>4(x), term-by-term, 

But 

dx f dx 
•4x 

which implies C* = -%. This can be solved for 

= -y2s/1-4x = xCM + C* 

cM = 1~i1-4x. 
2x 

We now show how to derive the central sequence for the trinomial triangle. 
4. THE TRINOMIAL TRIANGLE - CENTRAL TERM 

Consider the triangular array 1 
1 1 1 
1 2 3 2 1 
1 3 6 7 6 3 1 

x y z 
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where w = x + y + z shows the relation between the elements of the array. It is induced by the expansion of 

(1+x+x2)n, n = 0, 1,2,3, •• . 
Let 

2n n 
(1+x+x2)n = £ j5mxm = £ [n

k\x2k(1+x)n-k 

m=0 k=0 ' 

= [n0)(1 +x)n + (*]/7 +x)n-ix2 + ~+[nk)(1 +x)n~kx 

The coefficient j3„ is the central term and is given by 

A.-(S)U)+(")fi=i)+™+(-I(«B-^) -
where a = [n/2]. The (3n may be written in several forms. 

[n/2] [n/2] [n/2] 

A.= E (j)(n-_-aj) = x G H V I - £ ui[?). 
te~i/ fe=0 fe=0 

~k~2k + . 

since 
ln\ l n — k\ _ n! (n -k)l _ w/ f2fej/ _ / « \ I 2k \ 
\kj\ k I kl(n-k)! k!(n-2k)l (2h)l(n - 2k)!k!k! \2k\ \ k j 

We now derive the central term generating function, 
oo 

sjl -2x- 3x2
 n=0 

Thus 

since 

Thus 

since 

But 

so that 

oo oo I [m/2] \ oo / oo \ 

BM - E em*m - E E (5) if) K - r E m*m) (2£)-
m=0 m=0 \ k=0 I k=0 \ m=2k I 

(™) = 0 if 0 < m < 2k. 

£ [2i)i G*)*mis(?)f-4w) • 
fe=o 

(7 -* ; f e + i
 M=0 

AM = E (2
feV / 

k=0 ' V?-4x 

* W _- ̂ J_ ^ *2 ^ - / I L 
1-X \(1-X)2 I-* v^f^) sJ1-2x-3x2 

This completes the derivation. 
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Thus, A(x), the generating function for central term of the svenly subscripted rows of Pascal's triangle, is related by 
a transformation to the central term generating function for the trinomial triangle 

B(x) 
1~x \(1-x)2) 

Much more can be done with this but that is another paper and is covered in Rondeau [2] and Anaya [1]. It should 
be noted that the generating function B(x) could also have been derived by Lagrange's Theorem as in [6]. 

Sequence 456, in [4], is the Catalan sequence for the Trinomial Triangle 1, \, 2,4,9f 21, •••, £ * , - . This sequence 
C* can be obtained from the regular Catalan 1,1,2,5,14,42, - if we truncate the first term, by repeated differenc-
ing. (See [1].) ^ 

1 2 5 14 42 

A2C„ 
V Cn Catalan Numbers 

A3C„ 
A*Cn 

% 

1 3 9 28 
2 6 19 

4 13 
9 

The Catalan generating function C(x) is 

CM = £ cnx" = 1-^-4x 

n=0 

C2(xj = C(XLL1 = £ Cn+1x
n = 1-2*->/1-4x 

X n=0 2X2 

Let C*(x) be the generating function for Catalan numbers for the Trinomial Triangle. This is 

[ ,_ _i*__ //__*L 
C*(x) = -J-C2 l-*-\ - -L-\ - LtJL l±x-

L (1 +x)2 

= 1-x-J1+x)(1-3x) _ 1-x-J1-2x-3x2 

2x2 2x2 

We can also get C*(x) from regular Catalan number generator by another transformation related to summation Webs 
>: Catalan Numbers-> 

V 
1 0 1 0 2 0 5 0 14 

Here the Catalan number generator is 

1 1 1 2 2 5 5 14 
% 2 2 3 4 7 10 

% 4 5 7 11 17 
% 9 12 18 

% 21 30 
\ 51 

c(x*) = T-^-4*1 

2x" 

1~x V1-x] 1 2x2 

This is the same transformation we saw earlier. 
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5. B(x) FROM THE DIFFERENCE EQUATION 
In Riordan [3, p. 74], they give the recurrence for the numbers |3n, the central terms in the rows of a trinomial 

triangle. This is 
/ift, = (2n - Vpn_! + 3(n - 1)pn_2 . 

We shall now derive this. 
We will start with the well known generating function for the Legendre Polynomials 

7 E PnMxn. 
*J1-2xt+X2 n=0 

We introduce a phantom parameter t in the generating function for B(x). 
oo 

B(x,t) = 1- = E Mn(t)x
n , 

y/1 - 2xt - 3x2 n=0 

where clearly B(x, 1) = B(x) and Mn(l) = $n . 
Let 

xt = -iy/3x and t1 = -j=r, 

then 

£ Mn(t)xn = 1 = 1 = £ Pnitt)x
n

t . 
n=0 s/1-2xt-3x2 sJ1 -2x1t1+x\ n=0 

= E Pnl^)(-isj3xr. 
n=0 \>/3l 

We note Mn(1) = $n, then 
ft, = (-isJ3)nPn(i/J3). 

The Legendre Polynomials obey the recurrence relation 
nPn(x) = (2n - 1)xPn_i (x) - (n-1)Pn_2(x) 

for n > Q, with PQ(X) = 1 and Pi (x) = x. From Po(x) = 1, then 
Po = (-iy/3)0P0(i/y/3) = 1 

and from Pi (x)=x, then 0j = H\J3)(i/s/3) = I Thus directly substituting Pn(x), withx = i/J3 the recurrence 
relation becomes - _ _ 

nPn(i/y/3) = (2n - 1) -4r Pn.t (i/^3) ~ (n - 1)Pn_2(i/yJ3) 
• s/3 

and 
n(-J3i)nPn(i/J3) = (2n-1)(-J3i)n -j=r Pn-i07>/3) ~ (n - V(-i>j3)nPn_2(i/s/3). 

Since 
jJn = (-iyJ3)nPn(i/>J3). 

this yields 
nj3n = (2n- 1)^t+3(n- 1)pn, 

with 0o = 1 f fo = 1 as was to be shown. 
We note in passing that 

lim b*L = * 
n - ° ° ftz J ' 

6. FROM THE RECURRENCE TO THE GENERATING FUNCTION 
We now go from the recurrence relation 
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fn +2)$n+2 = <2n + 3)$n+1 +3(n + 1)$n , 

with @o = Pi = 1, back to the generating function. 
Let 

then 

Further 

or 

Next, 

B(x)= X $**"> 
n=0 

xB'M = 22 nHnx
n 

n=0 

3xB'M + 3B(x) = 2L 3<n + 1>$nXn. 
n=0 

xB-M-O-Po-xfa = 22 n$nx
n 

n=2 

(B'M- V/x = 22 (n+2)$n+2xn . 
n=0 

*M = 1+X ]T (3n+7xn, B'M = 22 Pn+lXn+22 "Pn+ix", 
n=0 n=0 n=0 

BMf±= X) / W " , 2B'M+B-&f^ = £ (2n+3)$n+1x
n . 

n=0 n=0 

Thus, from the recurrence relation, we may write 

QMzJ. = 2B'(x) + B(x> ~ 1 + 3xB'M+3BM 
x x 

or 

B'(x)(1 -2x~ 3x2) = (3x + l)B(x), ^ . = 3 x + 1
 o . 

BM 1-2x- 3x2 

Integrating, In B(x) = -Y2 In (1-2x- 3x2) + \\\C. Thus 

BM = C , 
sJ1-2x-3x2 

and since B(0) = Po~ 1, it follows that £7 = /. This concludes the discussion. 
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