ON A CONJECTURE CONCERNING A SET OF SEQUENCES SATISFYING THE FIBONACCI DIFFERENCE EQUATION

J. C. BUTCHER

The University of Auckland, Auckland, New Zealand

Let $a=(1+\sqrt{5}) / 2$ and consider the set of sequences

$$
\begin{aligned}
S=\{ & (1,1,2,3,5,8,13, \ldots), \\
& (2,4,6,10,16,26,42, \ldots), \\
& (4,7,11,18,29,47,76, \cdots), \\
& (6,9,15,24,39,63,102, \ldots), \\
& (7,12,19,31,50,81,131, \ldots), \cdots\},
\end{aligned}
$$

where a sequence $u=\left(u_{0}, u_{1}, u_{2}, \cdots\right)$ is in S iff it satisfies the conditions
$u_{0}, u_{1}, u_{2}, \cdots$ are positive integers
(2) u satisfies the Fibonacci difference equation $u_{n}=u_{n-1}+u_{n-2}(n=2,3,4, \ldots)$
(3) there does not exist an integer x such that $\left|a x-u_{1}\right|<1 / 2$

$$
\begin{equation*}
\left|a u_{1}-u_{2}\right|<1 / 2 . \tag{4}
\end{equation*}
$$

Note that, for given u_{1}, there must exist an integer u_{2} satisfying (4), because of the irrationality of a.
For $n=0,1,2, \cdots$ let $S_{n}=\left\{u_{n}: u \in S\right\}$. It has been conjectured by Kenneth B. Stolarsky that for any $u \in S$, the value of $u_{2}-u_{1}$ equals the value of either v_{1} or v_{2} for some $v \in S$. Since $u_{2}=u_{0}+u_{1}$, this is equivalent to saying that $S_{0} \subset S_{1} \cup S_{2}$. In this paper we prove the stronger result, that $S_{0}=S_{1} \cup S_{2}$.
Lemma 1. If $u \in S$ then for all $n=1,2, \ldots$

$$
\begin{equation*}
a^{1-n} / 2<\left|a u_{n-1}-u_{n}\right|<a^{2-n} / 2 \tag{5}
\end{equation*}
$$

and
(6)

$$
a^{1-n} / 2<\left|a^{2} u_{n-1}-u_{n+1}\right|<a^{2-n} / 2 .
$$

Proof. We first show that, for any u, there is a constant C such that for all $n=1,2, \ldots$

$$
\begin{equation*}
C=a^{n}\left|a u_{n-1}-u_{n}\right| . \tag{7}
\end{equation*}
$$

If C_{n} denotes the value of C given by (7) we have

$$
\begin{aligned}
C_{n+1} & =a^{n+1}\left|a u_{n}-u_{n+1}\right|=a^{n}\left|a^{2} u_{n}-a u_{n+1}\right| \\
& =a^{n}\left|(a+1) u_{n}-a u_{n+1}\right|=a^{n}\left|a\left(u_{n+1}-u_{n}\right)-u_{n}\right| \\
& =a^{n}\left|a u_{n-1}-u_{n}\right|=C_{n} .
\end{aligned}
$$

From (4) we see that $C=a^{2}\left|a u_{1}-u_{2}\right|<a^{2} / 2$; also we see that $C=a\left|a u_{0}-u_{1}\right|<a / 2$ since $\left|a u_{0}-u_{1}\right|$ cannot equal $1 / 2$ because it is irrational, and cannot be less than $1 / 2$ by (3). Combining these inequalities we obtain (5). To prove (6) we simply note that

$$
\left|a^{2} u_{n-1}-u_{n+1}\right|=\left|(a+1) u_{n-1}-u_{n}-u_{n-1}\right|=\left|a u_{n-1}-u_{n}\right| .
$$

Lemma 2.

is the set of positive integers.
Proof. If there were positive integers not in this union, let y be the lowest of these. Since y is not a member of S_{1}, there exists an integer x such that $|a x-y|<1 / 2$. Since x is a positive integer less than y, it must lie in $\cup_{n=1}^{\infty} S_{n}$ and therefore $x=u_{n}$ for some $u \in S$ and n a positive integer. Since $\left|a u_{n}-y\right|<1 / 2,\left|a u_{n}-u_{n+1}\right|$ $<1 / 2$ it follows that $y=u_{n+1} \in S_{n+1}$.

Lemma 3. $\quad S_{0} \subset S_{1} \cup S_{2}$.

Proof. If this result did not hold, because of Lemma 2, there would exist $u, v \in S$ and $n>2$ such that $u_{n}=$ $v_{0} . \mathrm{By}(2)$ we then find

$$
v_{2}-u_{n+2}=\left(v_{1}+v_{0}\right)-\left(u_{n+1}+u_{n}\right)=v_{1}-u_{n+1}
$$

so that

$$
\left|(a-1)\left(v_{1}-u_{n+1}\right)\right|=\left|\left(a v_{1}-v_{2}\right)-\left(a u_{n+1}-u_{n+2}\right)\right|<1 / 2+1 / 2 a^{-n} \leqslant 1 / 2\left(1+a^{-3}\right)
$$

where we have used Lemma 1 to bound $\left|a v_{1}-v_{2}\right|$ and $\left|a u_{n+1}-u_{n}\right|$ and made use of the fact that $n \geqslant 3$. Since $a^{-3}=2 a-3$ we find

$$
\left|v_{1}-u_{n+1}\right|<\frac{1}{a-1} \cdot \frac{1}{2}(1+2 a-3)=1
$$

so that $v_{1}=u_{n+1}$. Using Lemma 1 again we find that

$$
1 / 2<\left|a v_{0}-v_{1}\right|=\left|a u_{n}-u_{n+1}\right|<a^{1-n} / 2<1 / 2
$$

a contradiction.

$$
\text { Lemma } 4 . \quad s_{1} \subset S_{0}
$$

Proof. Let $s=+1$ if $a u_{1}-u_{2}>0$ and -1 otherwise.
By Lemma 1, we have

$$
\frac{a^{-1}}{2}<s\left(a u_{1}-u_{2}\right)<1 / 2
$$

Let $y=u_{2}+s$ so that

$$
\frac{1}{2}<-s\left(a u_{1}-y\right)<1-\frac{a^{-1}}{2}
$$

which implies that

$$
\left|a u_{1}-y\right|<1-\frac{a^{-1}}{2}=1-\frac{a^{-1}}{2}=1-\frac{a-1}{2}=\frac{a}{2}-\frac{2 a-3}{2}<\frac{a}{2} .
$$

If there were an x such that $|a x-y|<1 / 2$, it would follow that

$$
\left|a u_{1}-a x\right|<\frac{a+1}{2}=\frac{a^{2}}{2}
$$

which implies

$$
\left|u_{1}-x\right|<\frac{a}{2}<1
$$

so that $u_{1}=x$ and $u_{2}=y$ which is impossible since $\left|u_{2}-y\right|=1$. Hence, no such x exists and therefore $y=v_{1}$ for some $v \in S$. Thus $\left|a u_{1}-v_{1}\right|<(a / 2)$. We now find

$$
\begin{aligned}
\left|u_{1}-v_{0}\right|=\left|u_{1}-v_{2}+v_{1}\right| & \leqslant\left|u_{1}-a^{-1} v_{1}\right|+\left|a^{-1} v_{1}-v_{2}+v_{1}\right|=(a-1)\left|a u_{1}-v_{1}\right|+\left|a v_{1}-v_{2}\right| \\
& <\frac{(a-1) a}{2}+\frac{1}{2}=1
\end{aligned}
$$

so that $u_{1}=v_{0} \in S$.
Lemma $5 . \quad S_{2} \subset S_{0}$.
Proof. Let $s=+1$ if $a^{2} u_{2}-u_{4}>0$ and -1 otherwise. By Lemma 1 , we have

$$
\frac{a^{-2}}{2}<s\left(a^{2} u_{2}-u_{4}\right)<\frac{a^{-1}}{2}
$$

so that if $y=u_{4}+s$ then

$$
1-\frac{a^{-1}}{2}<-s\left(a^{2} u_{2}-y\right)<1-\frac{a^{-2}}{2}
$$

Since

$$
1-\frac{a^{-1}}{2}>0 \quad \text { and } \quad 1-\frac{a^{-2}}{2}=\frac{a}{2}
$$

it follows that

$$
\left|a^{2} u_{2}-v\right|<\frac{a}{2}
$$

If there were an integer w such that $\left|a^{2} w-y\right|<1 / 2$ it would follow that

$$
a^{2}\left|u_{2}-w\right|<\frac{1+a}{2}=\frac{a^{2}}{2}
$$

implying that $w=u_{2}$ and that $y=u_{4}$, contradicting the fact that $\left|y-u_{4}\right|=1$. On the other hand, there is an integer $x=y-u_{2}$ such that $|a x-y|<1 / 2$ since

$$
|a x-y|=\left|(a-1) y-a u_{2}\right|=(a-1)\left|y-a^{2} u_{2}\right|<\frac{a(a-1)}{2}=\frac{1}{2}
$$

The existence of x (and the non-existence of w) satisfying these conditions, implies that $y=v_{2}$ for some $v \in S$. Thus,

$$
\left|a^{2} u_{2}-v_{2}\right|<\frac{a}{2}
$$

We now find

$$
\begin{aligned}
\left|u_{2}-v_{0}\right| & =\left|u_{2}+v_{1}-v_{2}\right| \leqslant\left|v_{2} a^{-2}-u_{2}\right|+\left|v_{2}\left(1-a^{-2}\right)-v_{1}\right| \\
& =a^{-2}\left(\left|v_{2}-a^{2} u_{2}\right|+\left|v_{2} a-a^{2} v_{1}\right|\right)<\frac{a^{-1}}{2}+\frac{a^{-1}}{2}=a^{-1}<1
\end{aligned}
$$

so that $u_{2}=v_{0} \in S_{0}$.
Combining the results of Lemmas $3,4,5$ we have
Theorem.

$$
S_{0}=S_{1} \cup S_{2}
$$

*

A GOLDEN DOUBLE CROSTIC: SOLUTION

MARJORIE BICKNELL-JOHNSON

Wilcox High School, Santa Clara, California 95051
"Geometry has two great treasures: one is the theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel." J. Kepler. Quotation given in The Divine Proportion by Huntley (Dover, New York, 1970, p. 23).

