RECURRENCES OF THE THIRD ORDER AND RELATED COMBINATORIAL IDENTITIES

L. CARLITZ

Duke University, Durham, North Carolina 27706

1. Let g be a rational integer such that $\Delta=4 g^{3}+27$ is squarefree and let w denote the real root of the equation
(1.1)

$$
x^{3}+g x-1=0 \quad(g>1) .
$$

Clearly w is a unit of the cubic field $Q(w)$.
Following Bernstein [1], put
and

$$
\begin{equation*}
w^{n}=r_{n}+s_{n} w+t_{n} w^{2} \quad(n \geqslant 0) \tag{1.2}
\end{equation*}
$$

$$
w^{-n}=x_{n}+y_{n} w+z_{n} w^{2} \quad(n \geqslant 0) .
$$

Making use of the theory of units in an algebraic number field, Bernstein obtained some combinatorial identities. He showed that

$$
s_{n}=r_{n+2}, \quad t_{n}=r_{n+1}, \quad y_{n}=x_{n-2}, \quad z_{n}=x_{n-1}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{n} u^{n}=\frac{1+g u^{2}}{1+g u-u^{3}}, \quad \sum_{n=0}^{\infty} x_{n} u^{n}=\frac{1}{1-g u^{2}-u^{3}} . \tag{1.4}
\end{equation*}
$$

Moreover, it follows from (1.2) and (1.3) that

$$
\left\{\begin{array}{l}
r_{n}^{2}-r_{n-1} r_{n+1}=x_{n-3} \tag{1.5}\\
x_{n}^{2}-x_{n-1} x_{n+1}=r_{n+3}
\end{array}\right.
$$

Explicit formulas for r_{n} and x_{n} are implied by (1.4). Substituting in (1.5) the combinatorial identities result. Since $\Delta=4 g^{3}+27$ is squarefree for infinitely many values of g, the identities are indeed polynomial identities.
The present writer [2] has proved these and related identities using only some elementary algebra. For example, if we put

$$
1+g x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

and define

$$
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \quad(\text { all } n)
$$

and

$$
\rho_{n}=\left\{\begin{array}{ll}
r_{n} & (n \geqslant 0) \\
x_{-n} & (n \geqslant 0)
\end{array},\right.
$$

then various relations are found connecting these quantities. For example

$$
\begin{equation*}
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n} . \tag{1.6}
\end{equation*}
$$

Each relation of this kind implies a combinatorial identity.
In the present paper we consider a slightly more general situation. Let u, v denote indeterminates and put

$$
1-u x+v x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

We define σ_{n} by means of
Supported in part by NSF grant GP-37924X.
(1.7) and ρ_{n} by (1.8)

$$
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \quad(\text { all } n)
$$

$$
\rho_{n}=A a^{n}+B \beta^{n}+C \gamma^{n} \quad(\text { all } n),
$$

where A, B, C are determined by

$$
\frac{1}{1-v x+u x^{2}-x^{3}}=\frac{A}{1-\beta \gamma x}+\frac{B}{1-\gamma a x}+\frac{C}{1-a \beta x}
$$

Thus
(1.9)

$$
\sum_{n=0}^{\infty} \rho_{-n} x^{n}=\frac{1}{1-v x+u x^{2}-x^{3}}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \rho_{n} x^{n}=\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}} \tag{1.10}
\end{equation*}
$$

while
(1.11)
and

$$
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\frac{3-2 u x+v x^{2}}{1-u x+v x^{2}-x^{3}}
$$

(1.12)

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\frac{3-2 v x+u x^{2}}{1-v x+u x^{2}-x^{3}}
$$

Since $a^{3}-a^{2} u+a v-1=0$, it is clear from the definition of σ_{n}, ρ_{n} that

$$
\sigma_{n+3}-u \sigma_{n+2}+v \sigma_{n+1}-\sigma_{n}=0
$$

and

$$
\rho_{n+3}-u \rho_{n+3}+v \rho_{n+1}-\rho_{n}=0
$$

for arbitrary n.
If we use the fuller notation

$$
\sigma_{n}=\sigma_{n}(u, v), \quad \rho_{n}=\rho_{n}(u, v),
$$

it follows from the generating functions that

| (1.13) | $\sigma_{-n}(u, v)=\sigma_{n}(v, u), \quad \rho_{n}(u, v)=\rho_{3-n}(v, u)$. |
| :--- | ---: | :--- |
| We show that | |
| (1.14)
 for arbitrary m, n. Similarly
 (1.15) | $\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n}$, |
| | $\sigma_{m} \rho_{n}=\rho_{m+n}+\rho_{m-n} a_{-n}-\rho_{m-2 n}$. |

As for the product $\rho_{m} \rho_{n}$, we have first

$$
\begin{equation*}
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\rho_{n-3} \sigma_{n-3} \tag{1.16}
\end{equation*}
$$

The more general result is

$$
\begin{gather*}
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1} \tag{1.17}\\
=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{n-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6}
\end{gather*}
$$

again for arbitrary m, n.
Each of the functions $\sigma_{n}(u, v), \sigma_{-n}(u, v), \rho_{n}(u, v), \rho_{-n}(u, v), n \geqslant 0$, is a polynomial in u, v. Explicit formulas for these polynomials are given in (2.9), (2.10), (4.5), (4.6) below. Moreover $\sigma_{p n}$ is a polynomial in σ_{n}, σ_{-n}; indeed we have
(1.18)

$$
\sigma_{p n}(u, v)=\sigma_{p}\left(\sigma_{n}, \sigma_{-n}\right) \quad(p \geqslant 0) .
$$

The corresponding formula for $\rho_{p n}$ is somewhat more elaborate; see (4.3) and (4.4) below.

Substitution of the explicit formulas for $\sigma_{n}, \sigma_{-n}, \rho_{n}, \rho_{-n}$ in any of the relations such as (1.14), (1.15), (1.16), (1.17) gives rise to a large number of polynomial identities.

The introduction of two indeterminates u, v in σ_{n}, ρ_{n} leads to somewhat more elaborate formulas than those in [1]. However the greater symmetry implied by (1.13) is gratifying.
2. It follows from
(2.1)

$$
1-u x+v x^{2}-x^{3}=(1-a x)(1-\beta x)(1-\gamma x)
$$

that

$$
\left\{\begin{array}{rl}
a+\beta+\gamma & =u \tag{2.2}\\
\beta \nu+\gamma a+a \beta & =v \\
a \beta \gamma & =1
\end{array} .\right.
$$

Since $\alpha \beta \nu=1,(2.1)$ is equivalent to

$$
\begin{equation*}
1-v x+u x^{2}-x^{3}=(1-\beta \gamma x)(1-\gamma a x)(1-a \beta x) \tag{2.3}
\end{equation*}
$$

We have defined

$$
\begin{equation*}
\sigma_{n}=a^{n}+\beta^{n}+\gamma^{n} \tag{2.4}
\end{equation*}
$$

for n an arbitrary integer. Thus

$$
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\sum \frac{1}{1-a x}=\frac{\sum(1-\beta x)(1-\gamma x)}{1-u x+v x^{2}-x^{3}}
$$

which, by (2.2), reduces to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{n} x^{n}=\frac{3-2 u x+v x^{2}}{1-u x+v x^{2}-x^{3}} \tag{2.5}
\end{equation*}
$$

Similarly

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\sum \frac{1}{1-\beta \gamma x}=\frac{(1-a \beta x)(1-a \gamma x)}{1-v x+u x^{2}-x^{3}}
$$

so that
(2.6)

$$
\sum_{n=0}^{\infty} \sigma_{-n} x^{n}=\frac{3-2 v x+u x^{2}}{1-v x+u x^{2}-x^{3}}
$$

Using the fuller notation

$$
\sigma_{n}=\sigma_{n}(u, v), \quad \sigma_{-n}=\sigma_{-n}(u, v)
$$

it is clear from (2.5) and (2.6) that

$$
\begin{equation*}
\sigma_{-n}(u, v)=\sigma_{n}(v, u) \tag{2.7}
\end{equation*}
$$

By (2.1), a, β, ν are the roots of

$$
z^{3}-u z^{2}+v z-1=0
$$

and so
(2.8)

$$
\sigma_{n+3}-u \sigma_{n+2}+v \sigma_{n+1}-\sigma_{n}=0
$$

for all n.
Next,

$$
\begin{aligned}
\left(1-u x+v x^{2}-x^{3}\right)^{-1} & =\sum_{k=0}^{\infty}\left(u x-v x^{2}+x^{3}\right)^{k}=\sum_{i, j, k=0}^{\infty}(-1)^{j}(i, j, k) u^{i} v^{j} x^{i+2 j+3 k} \\
& =\sum_{n=0}^{\infty} x^{n} \sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) u^{i} v^{j}
\end{aligned}
$$

[FEB.
where

$$
(i, j, k)=\frac{(i+j+k)!}{i!j!k!}
$$

Thus, by (2.5),
$\sigma_{n}=3 \sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) u^{i} v^{j}-2 u \sum_{i+2 j+3 k=n-1}(-1)^{j}(i, j, k) u^{i} v^{j}+v \sum_{i+2 j+3 k=n-2}(-1)^{j}(i, j, k) u^{i} v^{j}$

$$
=\sum_{i+2 j+3 k=n}(-1)^{j} u^{i} v^{j}\{3(i, j, k)-2(i-1, i, k)-(i, j-1, k)\} .
$$

Hence
(2.9)

$$
\sigma_{n}=\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j} \quad(n>0) .
$$

By (2.7) the corresponding formula for σ_{-n} is

$$
\begin{equation*}
\sigma_{-n}=\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j} \quad(n>0) . \tag{2.10}
\end{equation*}
$$

It follows that, for n prime, coefficients of all terms-except the leading term-in σ_{n} are divisible by n.
Returning to (2.4), we have

$$
\begin{aligned}
\sigma_{m} \sigma_{n}=\Sigma a^{m} \Sigma a^{n} & =\Sigma a^{m+n}+\Sigma a^{m}\left(\beta^{n}+\gamma^{n}\right)=\sigma_{m+n}+\Sigma a^{m-n}\left(a^{n} \beta^{n}+a^{n} \boldsymbol{y}^{n}\right) \\
& =\sigma_{m+n}+\Sigma a^{m-n}\left(a_{-n}-\beta^{n} \gamma^{n}\right)
\end{aligned}
$$

which gives
(2.11)

$$
\sigma_{m} \sigma_{n}=\sigma_{m+n}+\sigma_{m-n} \sigma_{-n}-\sigma_{m-2 n}
$$

valid for all m, n. Replacing m by $m+2 n$, (2.11) becomes

$$
\begin{equation*}
\sigma_{m+3 n}-\sigma_{m+2 n} \sigma_{n}+\sigma_{m+n} \sigma_{-n}-\sigma_{m}=0 \tag{2.12}
\end{equation*}
$$

For $m=n$, (2.11) reduces to

$$
\begin{equation*}
\sigma_{n}^{2}=\sigma_{2 n}+2 \sigma_{-n} \tag{2.13}
\end{equation*}
$$

Hence, for $m=2 n$,

$$
\sigma_{n} \sigma_{2 n}=\sigma_{3 n}+\sigma_{n} \sigma_{-n}-3
$$

so that
(2.14) $\quad \sigma_{3 n}=\sigma_{n}^{3}-3 \sigma_{n} \sigma_{-n}+3$.

To get the general formula we take

$$
\sum_{p=0}^{\infty} \sigma_{p n} x^{k}=\sum \frac{1}{1-a^{n} \dot{x}}=\frac{\Sigma\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}{\left(1-a^{n} x\right)\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}=\frac{3-2 \sigma_{n} x+\sigma_{-n} x^{2}}{1-\sigma_{n} x+\sigma_{-n} x^{2}-x^{3}}
$$

Comparing with (2.5), it is evident from (2.9) that

$$
\begin{equation*}
\sigma_{p n}=\sum_{i+2 j+3 k=p}(-1)^{j} \frac{p}{i+j+k}(i, j, k) \sigma_{n}^{i} \sigma_{-n}^{j} \quad(p>0) \tag{2.15}
\end{equation*}
$$

Substitution from (2.9) and (2.10) in (2.11), (2.12), (2.13), (2.14), (2.15) evidently results in a number of combinatorial identities. We state only
(2.16) $\left\{\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j}\right\}^{2}=\sum_{i+2 j+3 k=2 n}(-1)^{j} \frac{2 n}{i+j+k}(i, j, k) u^{i} v^{j}+2 \sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j}$
3. Put

$$
\begin{equation*}
\frac{1}{1-v x+u x^{2}-x^{3}}=\frac{A}{1-\beta y x}+\frac{B}{1-y a x}+\frac{C}{1-a \beta x}, \tag{3.1}
\end{equation*}
$$

where A, B, C are independent of x. Then
(3.2) $\quad\left(1-a^{2} \beta\right)\left(1-a^{2} \gamma\right) A=1$.

Since

$$
\left(1-a^{2} \beta\right)\left(1-a^{2} \gamma\right)=1-a^{2}(\beta+y)+a^{4} \beta \gamma=1-a^{2}(u-a)+a^{3}=1-a^{2} u+2 a^{3}
$$

it follows from $a^{3}-a^{2} u+a v-1=0$ that

$$
\begin{equation*}
A=\frac{1}{3-2 a v+a^{2} u} \tag{3.3}
\end{equation*}
$$

with similar formulas for B and C.
Replacing x by $1 / x$ in (3.1) and simplifying, we get

$$
\frac{x^{3}}{1-u x+v x^{2}-x^{3}}=-\sum \frac{A x}{\beta \gamma-x}=\sum \frac{A a x}{1-a x}=\sum \frac{A}{1-a x}-\sum A
$$

Since $\Sigma A=1$, it follows that

$$
\begin{equation*}
\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}}=\sum \frac{A}{1-a x} . \tag{3.4}
\end{equation*}
$$

We now define ρ_{n}, ρ_{-n} by means of

$$
\begin{equation*}
\frac{1-u x+v x^{2}}{1-u x+v x^{2}-x^{3}}=\sum_{n=0}^{\infty} \rho_{n} x^{n} \tag{3.5}
\end{equation*}
$$

and
(3.6)

$$
\frac{1}{1-v x+u x^{2}-x^{3}}=\sum_{n=0}^{\infty} \rho_{-n} x^{n}
$$

It then follows from (3.1) and (3.4) that
(3.7)

$$
\rho_{n}=\Sigma A a^{n}
$$

for all n.
By (3.6), we have, for arbitrary m and n,

$$
\rho_{m} \rho_{n}=\Sigma A a^{m} \cdot \Sigma A a^{n}=\Sigma A^{2} a^{m+n}+\Sigma B C\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)
$$

Thus

$$
\rho_{m+1} \rho_{n-1}=\Sigma A^{2} a^{m+n}=B C\left(\beta^{m+1} \gamma^{n-1}+\gamma^{m+1} \beta^{n-1}\right),
$$

so that

$$
\begin{equation*}
\rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}=\Sigma B C\left\{\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)-\left(\beta^{m+1} \gamma^{n-1}+\gamma^{m+1} \beta^{n-1}\right)\right\} \tag{3.8}
\end{equation*}
$$

The quantity in braces is equal to

$$
-(\beta-\gamma)\left(\beta^{m} \gamma^{n-1}-\gamma^{m} \beta^{n-1}\right)
$$

Hence

$$
\left\{\begin{array}{c}
\rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}=-\Sigma B C(\beta-\gamma)\left(\beta^{m} \dot{\gamma}^{n-1}-\gamma^{m} \beta^{n-1}\right) \\
\rho_{m} \rho_{n}-\rho_{m-1} \rho_{n+1}=-\Sigma B C(\beta-\gamma)\left(\beta^{n} \gamma^{m-1}-\gamma^{n} \beta^{m-1}\right)
\end{array} .\right.
$$

It follows that
(3.9)

$$
\begin{gathered}
\quad 2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1} \\
=-\Sigma B C\left(\beta-\gamma^{2}\left(\beta^{m-1} \gamma^{n-1}+\gamma^{m-1} \beta^{n-1}\right)\right.
\end{gathered}
$$

By (3.2),
so that (3.9) becomes

$$
B C(\beta-\gamma)^{2}=-A a^{2}
$$

(3.10)

$$
2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\Sigma A\left(\beta^{m-3} \gamma^{n-3}+\gamma^{m-3} \beta^{n-3}\right) .
$$

In particular, if $m=n$, (3.10) reduces to
and so
(3.11)

$$
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\Sigma A \beta^{n-3} \gamma^{n-3}=\Sigma A a^{-n+3}
$$

To get a more general result consider

$$
\begin{aligned}
\beta^{m} \nu^{n}+\gamma^{m} \beta^{n}=\left(\beta^{m}+\gamma^{m}\right)\left(\beta^{n}+\gamma^{n}\right)-\left(\beta^{m+n}+\gamma^{m+n}\right) & =\left(\sigma_{m}-a^{m}\right)\left(\sigma_{n}-a^{n}\right)-\left(\sigma_{m+n}-a^{m+n}\right) \\
& =\sigma_{m} \sigma_{n}-\sigma_{m} a^{n}-\sigma_{n} a^{m}-\sigma_{m+n}+2 a^{m+n} .
\end{aligned}
$$

Thus
(3.12)

$$
\Sigma A\left(\beta^{m} \gamma^{n}+\gamma^{m} \beta^{n}\right)=\sigma_{m} \sigma_{n}-\sigma_{m+n}-\sigma_{m} \beta_{n}-\sigma_{n} \beta_{m}+2 \rho_{m+n} .
$$

Combining (3.10) and (3.12) we get
(3.13) $2 \rho_{m} \rho_{n}-\rho_{m+1} \rho_{n-1}-\rho_{m-1} \rho_{n+1}=\sigma_{m-3} \sigma_{n-3}-\sigma_{m+n-6}-\sigma_{m-3} \rho_{n-3}-\sigma_{n-3} \rho_{m-3}+2 \rho_{m+n-6}$.

For $m=n$, (3.13) reduces to
(3.14)

$$
\rho_{n}^{2}-\rho_{n+1} \rho_{n-1}=\rho_{2 n-6}-\sigma_{n-3} \rho_{n-3}+\sigma_{-n+3}
$$

It is not evident that (3.14) is equivalent to (3.11). This is proved immediately below.

4. We now take

$$
\begin{aligned}
\rho_{m} \sigma_{n}=\Sigma A a^{m} \Sigma a^{n} & =\Sigma A a^{m+n}+\Sigma A a^{m}\left(\beta^{n}+\gamma^{n}\right)=\rho_{m+n}+\Sigma A a^{m-n}\left(a^{n} \beta^{n}-a^{n} \gamma^{n}\right) \\
& =\rho_{m+n}+\Sigma A a^{m-m}\left(\sigma_{-n}-a^{-n}\right),
\end{aligned}
$$

which gives
(4.1)

$$
\rho_{m} \sigma_{n}=\rho_{m+n}+\rho_{m-n} \sigma_{-n}-\rho_{m-2 n} .
$$

In particular, for $m=n$,
(4.2)

$$
\rho_{n} \sigma_{n}=\rho_{2 n}+\sigma_{-n}-\rho_{-n},
$$

which shows that (3.14) is indeed equivalent to (3.11).
For $m=2 n$, (4.1) gives

$$
\rho_{3 n}=\rho_{2 n} \sigma_{n}-\rho_{n} \sigma_{-n}+1=\rho_{n} \sigma_{n}^{2}-\sigma_{n} \sigma_{-n}+\rho_{-n} \sigma_{n}-\rho_{n} \sigma_{-n}+1
$$

To get a general formula for $\rho_{p n}$ take

$$
\begin{aligned}
\sum_{p=0}^{\infty} \rho_{p n} x^{p} & =\sum_{p=0}^{\infty} x^{p} \sum A a^{p n}=\sum \frac{A}{1-a^{n} x}=\frac{\sum A\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)}{\left(1-a^{n} x\right)\left(1-\beta^{n} x\right)\left(1-\gamma^{n} x\right)} \\
& =\frac{1-\left(\sigma_{n}-\rho_{n}\right) n+\rho_{-n} x^{2}}{1-\sigma_{n} x+\sigma_{-n} x^{2}-x^{3}}
\end{aligned}
$$

Then, as in the proof of (2.15), we have

$$
\begin{equation*}
\rho_{p n}=c_{p, n}-\left(\sigma_{n}-\rho_{n}\right) c_{p-1, n}+\rho_{-n} c_{p-2, n} \quad(p \geqslant 0) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{p, n}=\sum_{i+2 j+3 k=p}(-1)^{j}(i, j, k) \sigma_{n}^{i} \sigma_{-n}^{j} . \tag{4.4}
\end{equation*}
$$

Since

$$
\rho_{1}=\Sigma A a=0, \quad \rho_{2}=\Sigma A a^{2}=0
$$

we have in particular

$$
\begin{equation*}
\rho_{p}=\sum_{i+2 j+k=p-3}(-1)^{j}(i, i, k) u^{i} v^{j} \quad(p \geqslant 3) \tag{4.5}
\end{equation*}
$$

and
(4.6)

$$
\rho_{-p}=\sum_{i+2 j+3 k=p}(-1)^{j}(i, j, k) v^{i} u^{j} \quad(p \geqslant 0)
$$

With the fuller notation

$$
\rho_{n}=\rho_{n}(u, v), \quad \rho_{-n}=\rho_{-n}(u, v),
$$

it is clear from (4.5) and (4.6) that

$$
\begin{equation*}
\rho_{n}(u, v)=\rho_{3-n}(v, u) . \tag{4.7}
\end{equation*}
$$

Moreover (4.4) becomes
(4.8)

$$
c_{p, n}=\rho_{p}\left(\sigma_{n}, \sigma_{-n}\right) \quad(p \geqslant 0)
$$

We may now substitute from the explicit formulas (2.9), (2.10), (4.5), (4.6) in various formulas of Sections 3 and 4 to obtain a large number of polynomial identities in two indeterminants. To give only one relatively simple example, we take (4.2). Thus

$$
\begin{align*}
& \left\{\sum_{i+2 j+3 k=n-3}(-1)^{j}(i, j, k) u^{i} v^{j}\right\}\left\{\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) u^{i} v^{j}\right\} \tag{4.9}\\
& =\sum_{i+2 j+3 k=2(n-3)}(-1)^{j}(i, j, k) u^{i} v^{j}-\sum_{i+2 j+3 k=n}(-1)^{j}(i, j, k) v^{i} u^{j} \\
& \quad+\sum_{i+2 j+3 k=n}(-1)^{j} \frac{n}{i+j+k}(i, j, k) v^{i} u^{j} \quad(n \geqslant 0)
\end{align*}
$$

5. For small n, σ_{n} and ρ_{n} can be computed without much labor by means of the recurrences. Moreover the results are extended by the symmetry relations

$$
\sigma_{-n}(u, v)=\sigma_{n}(v, u), \quad \rho_{n}(u, v)=\rho_{3-n}(v, u)
$$

A partial check on σ_{n} is furnished by the result, that, for prime n,

$$
\sigma_{n}(u, v) \equiv u^{n} \quad(\bmod n)
$$

Also, by (2.5),

$$
\sum_{n=0}^{\infty} \sigma_{n}(1,1) x^{n}=\frac{3-2 x+x^{2}}{1-x+x^{2}-x^{3}}=\frac{3+x-x^{2}+x^{3}}{1-x^{4}}
$$

which implies

$$
\sigma_{n}(1,1)=3, \quad \sigma_{4 n+1}(1,1)=\sigma_{4 n+3}(1,1)=1, \quad \sigma_{4 n+2}(1,1)=-1
$$

As for $\rho_{n}(1,1)$, we have by (3.5)

$$
\sum_{n=0}^{\infty} \rho_{n}(1,1) x^{n}=\frac{1-x+x^{2}}{1-x+x^{2}-x^{3}}=\frac{1+x^{3}}{1-x^{4}}
$$

so that

$$
\rho_{4 n}(1,1)=\rho_{4 n+3}(1,1)=1, \quad \rho_{4 n+1}(1,1)=\rho_{4 n+2}(1,1)=0 .
$$

Table 1

Table 2

$\rho_{0}=1, \quad \rho_{1}=\rho_{2}=0, \quad \rho_{3}=1$
$\rho_{4}=u, \quad \rho_{5}=u^{2}-v$
$\rho_{6}=u^{3}-2 u v+1$
$\rho_{7}=u^{4}-3 u^{2} v+v^{2}+2 u$
$\rho_{8}=u^{5}-4 u^{3} v+3 u v^{2}+3 u^{2}-2 v$
$\rho_{9}=u^{6}-5 u^{4} v+6 u^{2} v^{2}+4 u^{3}-v^{3}-6 u v+1$
$\rho_{10}=u^{7}-6 u^{5} v+10 u^{3} v^{2}+5 u^{4}-4 u v^{3}-12 u^{2} v+3 v^{2}+3 u$

REFERENCES

1. L. Bernstein, "Zeros of Combinatorial Functions and Combinatorial Identities," Houston Journal of Math., Vol. 2 (1976), pp. 9-16.
2. L. Carlitz, "Some Combinatorial Identities of Bernstein," SIAM Journal of Mathematical Analysis, to appear.
