Hence, t must be even and $L_{r}=s^{2}$. Substituting this result in (5), we obtain: $s L_{t}-s^{2}=2$, which implies $s \mid 2$, and so $s=1$ or 2 .

SUBCASE A : $s=1$

Thus, $L_{r}=1^{2}=1$, and $r=1$. Thus, by (2), $F_{1}=1=F_{t}$. Since t must be even, thus $t=2$. Hence, $(1,1,2)$ is another possible solution. Since

$$
\frac{1}{\sqrt{5}}\left\{(1+a)^{n}-(1+\beta)^{n}\right\}=\frac{1}{\sqrt{5}}\left\{a^{2 n}-\beta^{2 n}\right\}=F_{2 n}=1^{n} F_{2 n},
$$

thus $(1,1,2)$ is a valid solution, the only one yielded by this subcase.

SUBCASE B : $s=2$

Then $L_{r}=2^{2}=4$, so $r=3$. Thus, by (2), $F_{3}=2=2 F_{t}$. As in Subcase A above, $t=2$. This yields the possible solution ($3,2,2$). Now

$$
\left(1+a^{3}\right)=2 a+2=2 a^{2} ;
$$

similarly, $\left(1+\beta^{3}\right)=2 \beta^{2}$. Hence,

$$
\frac{1}{\sqrt{5}}\left\{\left(1+a^{3}\right)^{n}-\left(1+\beta^{3}\right)^{n}\right\}=\frac{2 n}{\sqrt{5}}\left(a^{2 n}-\beta^{2 n}\right)=2^{n} F_{2 n}
$$

which shows that $(3,2,2)$ is indeed a valid solution, the only one yielded by this subcase.
Therefore, all solutions (r, s, t) of the desired identity are given by (7), and also by ($1,1,2$) and ($3,2,2$).
Also solved by the Proposer.
Late Acknowledgements:
P. Bruckman solved H-258, H-259, H-262, H-263.
S. Singh solved H-263.
[Continued from page 87.]
Proof. From Corollary 2 and $[4, p .205]$ we have $s\left(p^{2}\right)=s(p)$ if and only if $f\left(p^{2}\right)=f(p)$ if and only if

$$
\phi(p-1) / 2(5 / 9) \equiv 2 k(3 / 2)(\bmod p)
$$

From Wall's remark we note that $\phi(p-1) / 2(5 / 9) \equiv 2 k(3 / 2)(\bmod p)$ for all primes p such that $5<p<10,000$.

REFERENCES

1. John Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 2 (1963), pp. 37-45.
2. D. D. Wall, "Fibonacci Series Modulo m," Amer. Math. Monthly, 67 (1960), pp. 525-532.
3. H-24, The Fibonacci Quarterly, Vol. 2, No. 3 (1964), pp. 205-207.
4. D. W. Robinson, "The Fibonacci Matrix Modulo m," The Fibonacci Quarterly, Vol. 1, No. 2 (1963), pp. 29-36.
