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Let m be an arbitrary positive integer. According to the notation of Vinson [1 , p. 37] let sfm) denote the 
period of Fn modulo #7 and let ffm) denote the rank of apparition of m in Fn. 

It is easily verified that 

(1) F2n+i = f-1)n + FnLn+1 = (-1)n +Fn+1Ln 

for all integers n. 
In the sequel we shall use, without explicit reference, the well known facts that 

' 2n ~ 'n'-n > 

and that Fn and Ln are both odd or both even and 

(Fn, Ln) = d < 2, and Fm | Fmn 

for all integers n and m =/= 0. 

Lemma 1. F2n = Q (mod/77) and F2n+i =(~Vn (mod/77) if and only if Fn = Q (mod m). 

Proof, Let F2n = 0 (mod m) and F2n+i = f-Vn (mod m). Then by (l),FnLn+1 = 0 (mod/77). Since 
F2n = FnLn = Q (mod m), we have 

F-nLn+2 = FnLn+l + FnLn = 0 = FnLn+i - FnLn = FnLn„i (mod/7?) . 
So whether n is negative or non-negative we obtain after finitely many steps that FnL^ = Fn = 0 (mod/77). 

Conversely, let Fn = 0 (mod m). Then F2n = FnLn = Q (mod/77) and by (1), ^ w + i ^(-Vn (mod/77). 

Lemma 2 . F2n = 0 (mod m) and F2n+i = (- Vn+1 (mod m) if and only if Ln = 0 (mod m). 

Proof. Analogous to the proof of Lemma 1. 

The following lemma can be found in Wall [2, p. 526]. We give an alternative proof. 

Lemma 3. If m > 2, then s(m) is even. 

Proof. Suppose sfm) is odd. We have by definition of sfm) that 
F2s(m)+1 = Fs(m)+s(m)+l = Fs(m)+1 s 1 = f-1rm)+ (mod m) . 

Also 
F2s(m) = Fs(m)Ls(m) = 0 (mod/77) . 

Therefore by Lemma 2, Ls(m) - 0 (mod m). But 

(Fs(m)> Ls(m)> = d < 2 
which contradicts the fact that m > 2. 

An equivalent form of the following theorem, but with a different proof can be found in Vinson [1 , p. 42] . 
Theorem 1. We have 
i) m > 2 and ffm) is odd if and only if sfm) = 4f(m) 

ii) m' = 1 or 2 ors(m)/2 is odd if and only if sfm) = ffm) 
iii) ffm) is even and sfm) 12 is even if and only if sfm) = 2f(m). 

Proof. We first prove the sufficiency in each case. 
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Case i): Let/77 > 2 and ffm) be odd. From Vinson [1 , p. 37] we have f(m)\s(m). Sincesfm) is even for/77 > 
2 we know that sfm) H(m) and sfm) £3f(m), We have f2f(m) = 0 .(mod m) and by (1), 

F2f(m)+1 ^hl)f(m) = - / (mod/77). 
Therefore sfm) £2f(m) since m > 2. But F4f(m) - 0 (m°d m) and by (1), 

% f m ; ^ ^ (-7)2f(m) = 1 (mod/77). 
Therefore s/W = 4/7/77/ 

Case ii): The conclusion is clear for/77 = 1 or 2. Let/77 > 2 ands(m)/2 be odd. Then by Case i), ffm) is even. 
So F2f(m) = 0 (mod m) and by (1), 

F2f(m)+1 - hDf(m) = 1 (mod/77) 
which implies that s/W <2f(m). sfm) ^2f(m) since s(m)/2 is odd and ^/T?,) is even. Therefore since ffm)\sfm), 
we have S//77,/ = 77/77 A 

Case iii): let ffm) be even and s(m)/2be even. Thenm > 2. We have F2f(m) = 0 (mod/77) and by (1), 

F2f(m)+1 - M ^ = 1 (mod/77). 
Therefore s(m) <2f(m). Now, Fs(mj = 0 (mod /77> and Fs(mj+1 = / = f-i)s(m)12 (mod /77>. SO by Lemma 1, 
Fs(m)l2 = 0 (m°d w). Thus^/77j^/Y/77,/ and therefore since f(m)\s(m) we haves(m) = 2f(m). 

The necessity in each case follows directly from the implications already proved. 
The following corollary is part of a theorem by Vinson [1 , p. 39]. 

Corollary 1. Let/7 be any odd prime and e any positive integer. Then we have 

). f(pe) is odd if and only \U(pe) = 4f(pe) 
). f(pe) is even and f(pe)/2 is odd if and only if s(pe) = f(pe) 
). f(pe) is even and f(pe)/2 is even if and only if s(pe) = 2f(pe), 

Proof, By Theorem 1, we need only prove that s(pe)/2 is odd if and only if f(pe) is even and f(pe)/2 is 
odd, The sufficiency is clear by Theorem 1, ii). 

Conversely, let f(pe) be even and f(pe)/2 be odd. Then 

Since 

F e = F e L e = 0 (mod/7e). 
ftp ) f(P )12 f(P )/2 

(F e ,L e ) = d < 2 < p 
f(pe)/2> f(pe)l2 

we have L e = 0 (mod pe). Therefore by (1), 
f(P)'2 F e s (-f)(f(Pe)/2)+l = 1 (mod/7*). 

ftp )+i 

Thuss(pe) = f(pe) and so s(pe)/2 is odd. 

Definition. If m divides some member of the Lucas sequence, \etgfm) denote the smallest positive in-
teger/7 such that m\Ln. 

If m divides no member of the Lucas sequence, we shall say thatg(m) does not exist. 
From Vinson [1 , p. 37] we have 

(2) Fn = 0 (mod/77) if and only if f(m)\n. 

It is interesting to note from the following proof that if 4\f(4n), theng(4n) does not exist 

Lemma 4. If n is an odd integer andg(4n) exists, then 4\Lf(4nj/2. 

Proof By observing the residues of the Lucas sequence modulo 4 we find that4\Lg^nj \mp\\esg(4n) = 
3 + 6k for some integer k. Therefore g(4n) is odd. We have 4n\Lg(4n)\F2g(4n)> So by (2), f(4n)\2g(4n). 
Hence 4 Hf4n). Since *\Fj(4n) we have by (2) that 6 = f(4)\f(4n). Since f(4n)/2 is odd and 3\f(4n)/2we 
have from Carlitz [3, p. 15J that 4 = L3\Lff4nj/2 . 

Theorem 2. If m > 2 and g(m) exists, then 2g(m) = ffm). 



1978] OF m IN THE LUCAS SEQUENCE 9 

Proof. We have m |Lg(m)\F2g(m)- So by (2), f(m)\2g(m). Suppose f(m) is odd. Then f(m)\g(m) 
and therefore by (2),m\Fg(my lhmm\(Lg(m), Fg(m)) = d < 2, a contradiction since m > 2, Hence ffm) is 
even., 

To complete the proof it suffices to show that m \Lf(mj/2 which \mo\\e$g(m) = f(m)/2. We have 
m\Ff(m) = Ff(m)l2Lf(m)l2-

Let m = mirr)2 wherem^ \Ff(mj/2 and M2\Lf(m)l2- Since f(m)/2\g(m) we have/^ \Ff(m)l2\Fg(m)> There-
fore /7?̂  \(Fg(m), Lg(m)) = c/ < 2. So /TTJ = 1 or 2. \im^ = 1,then/772 = m\Lf(m)l2> the desired conclusion. 
Assume m^ = 2. Then m is even. Since 2\Ff(mj/2 we have 2|Z.^m^/2. If rri2 = m/2 is odd, then 2m2 = 
m\Lf(mj/2, the desired conclusion. Assume /T?2 = /W/2 is even. Sinceg(8) does not exist we know that 8 j( m. 
Therefore 11)2/2 = m/4 is odd. Since g(4(m 2/2)) = g(m) exists we have by Lemma 4 that 4\Lf(mj/2. Thus 
m = 4(iri2/2) \Lf(m)i2. The proof is complete. 

Corollary 2. For any odd primep and any positive \x\Xs%sx e,g(pe) exists if and only if f(pe) is even. 

Proof. The sufficiency follows from Theorem 2 and the necessity follows from the facts /^w = FnLn 

and (Fn, Ln) = d <2 <p for all integers n. 

Theorem 3. We have 
i) g(m) exists and is odd if and only if s(m) = ffm) 

ii) g(m) exists and is even if and only \is(m) = 2f(m) and Ff/m\+1 = - 1 (mod m) 
iii) g(m) does not exist if and only if either s(m) = 2f(m) and Ff(m)+1 £ - 1 (mod m) oxs(m) = 4f(m). 

Proof. Case i): Let g(m) exist and be odd. The case/77 = 1 or 2 is clear. Assumem > 2. By Theorem 2, 
f(m) = 2g(m). Therefore by (1), 

Ff(m)+1 - (-l)S(m)+1 = 1 (mod 777). 
Hence s(m) = f(m). 

Conversely, let s(m) = f(m). The case m = 1 or 2 is clear. Assume m > 2. By Theorem 1, s/777,//2 is odd. 
Therefore 

Fs(m) = 0 (mod/77) and Fs(m)+1 = 1 = (-1)(s(m)l2)+l (mod m) . 

Hence by Lemma 2, is(m)\2 = 0 (mod w) a n d thus^/W exists. By Theorem 2,s(m) = f(m) = 2g(m). Ihexe-
f ore g(m) is odd. 

Case ii): Let g(m) exist and be even. Then m > 2 and by Theorem 2, f(m) = 2g(m). Thus %\f(m) and so by 
Theorem \,s(m) = 2f(m). By (1), Ff(m)+1^(-1)g(m)+1 = - 1 (modm). 

Conversely, let sf/77) = 2f(m) and Ff(mj+1 = - 1 (mod /T?). We have /y^ m ; = 0 (mod 777). By Theorem 1, 
m > 2 and f /W is even. If f(m)/2 is odd, xhen F^m^+1 = (-i)j(m)'2 (mod /77> which implies by Lemma 1 
that Ff/mj/2 = 0 (mod /77), a contradiction. Hence /Y/7?j/2 is even. Therefore Ff(mj+1 = ( - 1)(j(m)' J+1 (mod 
/77> which implies by Lemma 2 that Lf(m)J2 = 0 (m°d #?)• Thus#/W exists and by Theorem 2, f(m)/2 = g{m) 
is even. 

Case iii): Follows from Cases i) and ii) and from Theorem 1. 

Corollary 3. For any odd primep and any positive integers we have 
i) g(pe) exists and is odd if and only if s(pe) = f(pe) 

ii) g(pe) exists and is even if and only if s(pe) = 2f(pe) 
iii) g(pe) does not exist if and only \U(pe) = 4f(pe). 

Proof. In view of Theorem 3 we need only prove thats(pe) = 2f(pe) implies F e = - 1 (modpe). 
f(P ) + 1 

By Corollary 1, \U(pe) = 2f(pe), then f(pe) is even and f(pe)/2 is even. We have 

F e = F e L e = 0 (modpe) and (F e ,Lr6 ) = d < 2 < p . 
f(P ) f(pe)/2 f(P

e)/2 y f(pe)/2' f(pe)l2 

Therefore L e = Q(mo6pe). So by (1), 
f(P)'2 F e =(-l)(f(Pe)l^ = - 1 ( m o d ^ . 

f(pe)+l 
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Theorem 4. Let/7 be an odd prime and e be any positive integer. Then 
i) g(pe) exists and is odd i fp = 11 or 19 (mod 20) 
ii) g(pe) exists and is even if p = 3 or 7 (mod 20) 

iii) g(pe) does not exist if p = 13 or 17 (mod 20) 
iv) g(pe) is odd or does not exist if p = 21 or 29 (mod 40). 

Proof. Follows from Vinson [1,p. 43] and Corollary 3. 
Wall [2, p. 525] has shown that the period of Ln modulo m exists for all positive integers m. 
Let h(m) denote the period of Ln modulo m. 

Corollary 4. Letg(m) exist. Then 
i) m = 1 or 2 if and only if h(m) = g(m) 
ii) m > 2 and g(m) is odd if and only if h(m) = 2g(m) 
iii) g(m) is even if and only if h(m) = 4g(m). 

Proof. Sinceg(m) exists and g(5) does not exist we have (m, 5)= 1. So from the corollary to Theorem 8 
of Wall [2, p. 529] we have s(m) = h(m). We first prove the sufficiency in each case. 

Case i) is clear. 
Case ii): By Theorems 2 and 3,2g(m) = f(m) = slm) = h(m). 
Case iii): By Theorems 2 and 3,4g(m) = 2f(m) = slm) = h(m). 
The necessity in each case follows directly from the implications already proved. 
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