ENTRY POINTS OF THE FIBONACCI SEQUENCE AND THE EULER ϕ FUNCTION

JOSEPH J. HEED and LUCILLE A. KELLY Norwich University, Northfield, Vermont 05663

There is an interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci numbers modulo a prime.

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the b-mal expansion of $1 / p$ is of length d_{i} in $\phi\left(d_{i}\right)$ incongruent bases modulo p where $d_{i} \mid p-1$ and ϕ is Euler's totient function. A similar statement can be made about certain classes of linear recursive sequences modulo p.
1.0 Let $\Gamma^{n} c, q$ be the $n^{\text {th }}$ term of a linear recursive sequence,

$$
\Gamma^{n} c, q= \begin{cases}\frac{(c+\sqrt{q})^{n}-(c-\sqrt{q})^{n}}{2 \sqrt{q}} & \text { for } q \not \equiv c^{2}(\bmod 4) \\ \frac{\left(\frac{c+\sqrt{q}}{2}\right)^{n}-\left(\frac{c-\sqrt{q}}{2}\right)^{n}}{\sqrt{q}} & \text { for } q \equiv c^{2}(\bmod 4)\end{cases}
$$

yielding the sequences defined by

$$
\Gamma^{n}=\left\{\begin{array}{l}
2 c \Gamma^{n-1}+\left(q-c^{2}\right) \Gamma^{n-2} \\
c \Gamma^{n-1}+\frac{q-c^{2}}{4} \Gamma^{n-2}
\end{array}\right.
$$

with initial values $1,2 c$ or $1, c$.
For $c=1, q=5$ we have the Fibonacci sequence.
We are interested in the entry points of these sequences, modulo p, a prime.
Borrowing the analogy, we will say that $\Gamma c, q$ belongs to the exponent x modulo p, if

$$
p \mid \Gamma^{x} c, q, \quad p \nmid \Gamma^{y} c, q \quad \text { for } y<x .
$$

The main results are:
1.1 For q a quadratic non-residue of p, c ranging from 1 to p, there are $\phi\left(d_{i}\right)$ values c such that $\Gamma c, q$ belongs to the exponent d_{i} modulo p, where $d_{i} \mid p+1, d_{i} \neq 1$.
1.2 For q a quadratic residue of p, c ranging from 1 to p, there are $\phi\left(d_{i}\right)$ values c such that $\Gamma c, q$ belongs to d_{i} modulo $p, d_{i} \mid p-1, d_{i} \neq 1$, and two values for which the sequence is not divisible by p at all.
1.3 For c fixed, $c \neq 0(\bmod p), q$ ranging from 1 to p, for each divisor of $p-1$ and $p+1$, except 1 and 2 , there are $\phi\left(d_{i}\right) / 2$ values of q such that $\Gamma c, q$ belongs to d_{i} modulo p. In addition there is one value such that $\Gamma c, q$ belongs to p (for $q=p$) and one for which the sequence is not divisible by p at all (for $q \equiv c^{2} \bmod p$).
1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form $10 n \pm 1$ the entry point of the Fibonacci sequence should be maximal, $(p-1)$, on an average

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\phi\left(p_{i}-1\right)}{p_{i}-3}
$$

over primes of that form; and the entry point should be maximal, $(p+1)$, on an average

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \frac{\phi\left(p_{i}+1\right)}{p_{i}-1}
$$

over primes of the form $10 n \pm 3$. Investigations of entry points of primes less than 3000 [1,2] show a remarkably close correspondence with these theoretical values.

Number of Maximal Entry Points for $p<\mathbf{3 0 0 0}$

	Predicted	Observed
$\Sigma \phi(p-1) / p-3=$	74.25	76
$\Sigma \phi(p+1) / p-1=$	87.78	88

2.0 Consider the sequences $\left\{\Gamma^{n} c, q\right\}$ modulo p, where c and q range over the reduced residue classes modulo p. Let d be the exponent to which $\Gamma c, q$ belongs modulo p.
The following can easily be established:
2.1.1 If $p \mid \Gamma^{n} c, q$, then $p \mid \Gamma^{n} c, q+p$ and $p \mid \Gamma^{n} c+p, q$.
2.1.2 For $c \equiv 0(\bmod p), d=2$.
2.1.3 For $q \equiv 0, c \neq 0(\bmod p), d=p$.
2.1.4 For $c_{i}+c_{j} \equiv 0(\bmod p), d_{i}=d_{j}$.
2.1.5 For $q \equiv c^{2}(\bmod p), d=\infty$.
2.2 Let $a=c+\sqrt{q}, \bar{a}=c-\sqrt{q}$. If $\Gamma c, q$ belongs to the exponent $k(\bmod p)$, we say a has Γ-order k. That is

$$
a^{k}-\bar{a}^{k} \equiv 0(\bmod \rho), a^{m}-\bar{a}^{m} \not \equiv 0(\bmod p) \text { for } m<k, m \neq 0 .
$$

We wish to determine the smallest d such that

$$
a^{d} \equiv \bar{a}^{d} \quad(\bmod p)
$$

We consider two cases, q a quadratic non-residue of p, and q a residue.
3.0 Case $1, q$ a quadratic non-residue of p. Construct $G F\left(p^{2}\right)$ with typical element $c+k \sqrt{q}\left(\right.$ note: $k^{2} q \equiv \hat{q}(\bmod p)$, a non-residue). For some $c^{\prime}, q^{\prime}, a=c^{\prime}+\sqrt{q^{\prime}}$ is of order $p^{2}-1$ since the multiplicative group of $G F\left(p^{2}\right)$ is cyclic.
3.1 We show that $\bar{a}=a P$.

The conjugate of a can be defined as that element \bar{a} such that $a \bar{a}$ and $a+\bar{a}$ are both rational, i.e., elements of $G F(p)$. We know that in $G F(p)$ there are $\phi\left(d_{i}\right)$ elements of order $d_{i}, d_{i} \mid p-1$, and that $\Sigma \phi\left(d_{i}\right)=p-1$, accounting for all the non-zero elements of $G F(p)$. Thus the elements of $G F\left(p^{2}\right)$ which are in $G F(p)$ are characterized by orders which divide $p-1$, i.e.,

$$
a^{k(p+1)}, \quad k=1,2, \cdots, p-1
$$

3.1. Since a is of order $p^{2}-1, a \cdot a^{p}$ is of order $p-1$, thus is rational.
3.1.2 To show: $a+a^{p}$ is of order dividing $p-1$.

Expanding $\left(a+a^{p}\right)^{p-1}$, and noticing that $\left(p_{k}^{-1}\right) \equiv(-1)^{k} \bmod p$, we obtain

$$
\begin{aligned}
\left(a+a^{p}\right)^{p-1} & \equiv a^{p-1}+\binom{p-1}{1} a^{2 p-2}+\cdots+a^{p(p-1)} \equiv a^{p-1}-a^{2 p-2}+\cdots+a^{p(p-1)} \\
& \equiv a^{p-1}\left(1-a^{p-1}+\left(a^{p-1}\right)^{2}-\cdots+\left(a^{p-1}\right)^{p-1}-\left(a^{p-1}\right)^{p}+\left(a^{p-1}\right)^{p}\right) \\
& \equiv a^{p-1}\left[\frac{\left(1-\left(a^{p-1}\right)^{p+1}\right)}{1+a^{p-1}}+\left(a^{p-1}\right)^{p}\right] \equiv a^{p-1}\left[\frac{1-a^{p^{2}-1}}{1+a^{p-1}}+a^{p^{2}-p}\right] \\
& \equiv a^{p-1} a^{p^{2}-p} \equiv a^{p^{2}-1} \equiv 1 \bmod p .
\end{aligned}
$$

Thus $a+a^{p}$ is of order dividing $p-1$ and is rational. It follows that $\bar{a}=a^{p}$.
3.1.3 It can similarly be shown that $\bar{a}^{a}=a^{a p}$, unless a is a multiple of $p+1$. In that case a^{a} is rational and self conjugate, cf. §4.0.
Let $\bar{a}^{a}=a^{a p}$. Then $\left(a^{a}\right)^{k} \equiv\left(a^{a p}\right)^{k}$ for $a^{a p k}-a^{a k} \equiv 0, a^{a k(p-1)} \equiv 1(\bmod p)$, and $a k \equiv 0(\bmod p+1)$, since a is of order $p^{2}-1$. k is a divisor of $p+1$, say, d_{i}. Let $n d_{i}=p+1$, so that n is the smallest non-zero solution to $x d_{i} \equiv 0$ $\bmod (p+1)\left(\right.$ i.e.,a^{n} has Γ-order $\left.d_{i}\right)$.
If $(t n) d_{i} \equiv 0(\bmod p+1)$, where $\left(t, d_{i}\right)=m, t=t^{\prime} m, d_{i}=d_{j} m$ and $d_{j} \mid p+1$ with $d_{j}<d_{i}$, then

$$
(\operatorname{tn}) d_{j} \cong 0 \quad(\bmod p+1)
$$

and $(t n)$ is a solution to $x d_{j} \equiv 0(\bmod p+1)$ with $d_{j}<d_{i}$.
$x=t n, t=1,2, \cdots$, are solutions to $x d_{i} \equiv 0(\bmod p+1)$, and are primitive solutions for $\left(t, d_{i}\right)=1$. There are exactly $\phi\left(d_{i}\right)$ of these less than d_{i}. For each of the $\phi\left(d_{i}\right)$ of these $t n$ values, $t n<p+1, a^{t n}$ has Γ-order d_{i}.
Consequently, for every divisor $d_{i} \neq 1$ of $p+1$, there are $\phi\left(d_{i}\right)$ values $a<p+1$, such that a^{a} has Γ-order d_{i}.
3.3 We wish to relate the elements in the tables below:

Table 1

Table 2

a	$a^{1+(p+1)}$		$a^{1+k(p+1)}$		
a^{2}					
\cdots		\cdots			
a^{a}			$a^{a+k(p+1)}$		
\cdots					
a^{p+1}	$a^{2(p+1)}$				$a^{p^{2}-1}$

NOTE: The elements of the last row of table two are rational. The elements of columns two through $p-1$ are rational multiples of the elements of the first column, in which for the exponent less than $(p+1)$, there are $\phi\left(d_{i}\right)$ elements of Γ-order d_{i}. Thus the Γ-orders of the elements in the first p rows are equal by rows and divide $p+1$. Since a is of order $p^{2}-1$, all $a+b \sqrt{q}$ are represented by some power of a. For $c_{i}+\sqrt{q_{i}}, q_{i}$ a non-residue, there is some $a^{k}=c_{i}+b \sqrt{q} \equiv c_{i}+\sqrt{q_{i}}(\bmod p)$.
3.3.1 If $a^{k} \equiv c_{i}+\sqrt{q_{i}}$ and $a^{m} \equiv c_{j}+\sqrt{q_{i}}$, then a^{k} and a^{m} are not in the same row in table two, for if

$$
a^{k}=a^{x+y_{1}(p+1)} \quad a^{m}=a^{x+y_{2}(p+1)} \quad x<p+1
$$

then

$$
c_{i}+\sqrt{q_{i}}=a^{x+y_{1}(p+1)}, \quad c_{j}+\sqrt{q_{i}}=a^{x+y_{2}(p+1)}
$$

subtracting,

$$
c_{i}-c_{j}=a^{x}\left(a^{y_{1}(p+1)}-a^{y_{2}(p+1)}\right)
$$

and a^{x} is rational, i.e., $x=p+1$, contrary to hypothesis.
3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the q_{i} column of table one, indicating that for q_{i} a non-residue, c_{i} ranging from 1 to p there are $\phi\left(d_{i}\right), d_{i} \mid p+1$ elements,
$c_{i}+\sqrt{q_{i}}$, of Γ-order d_{i} (Result 1.1).
4.0 Case $2, q$ a quadratic residue of p. Consider the elements of $G F(p)$. Let $\beta_{i}=a_{i}+b$, where $b \equiv \sqrt{q}(\bmod p)$, and call $\bar{\beta}_{i}=a_{i}-b$. Let $\gamma_{i}=\beta_{i} \bar{\beta}_{i}^{-1}=\left(a_{i}+b\right) /\left(a_{i}-b\right)$. If $\left(a_{i}+b\right) /\left(a_{i}-b\right) \equiv\left(a_{j}+b\right) /\left(a_{j}-b\right)$, then $a_{i} \equiv a_{j}$, and if a ranges through the values 0 to $p-1$ the γ_{i} values generated are distinct. Provided $a \equiv \pm b(\bmod p)$, these are the elements 2 through $p-1$ of $G F(p)$.
From $\left(\left(a_{i}+b\right) /\left(a_{i}-b\right)\right)^{k}=\gamma_{i}^{k}$ it is clear that the Γ-orders of β correspond with the orders of γ. There are $\phi\left(d_{i}\right)$ elements, γ_{i}, of order d_{i} for each divisor of $p-1\left(d_{i} \neq 1\right)$, thus $\phi\left(d_{i}\right)$ elements β_{i} with Γ-orders d_{i} for each divisor of $p-1$ except 1 . In addition, for $a \equiv \pm b(\bmod p)$, i.e., $q \equiv c^{2}(\bmod p)$, the equation $\left(a_{i}+b\right)^{k} \equiv\left(a_{i}-b\right)^{k}$ has no solutions and we say the Γ-order of β is ∞. (2.1.5). (Result 1.2.)
5.0 To establish Result 1.3, relating to the rows of table one, consider $c+\sqrt{q_{i}}$ as q_{i} ranges from 1 to $p-1$.
$c+\sqrt{q_{i}}$ has the same Γ-order as $c k+\sqrt{k^{2} q}$ and as $(c k)^{\prime}+\sqrt{k^{2} q}$, where $c k+(c k)^{\prime} \equiv 0(\bmod p)$ (2.1.4). Choose q_{j} a non-residue, $c_{i}<(p-1) / 2$, and k such that $k c_{i} \equiv c$. Then $k^{2} q_{j}$ is a non-residue and $k\left(c_{i}+\sqrt{q_{j}}\right) \equiv c+\sqrt{q_{i}}$ and has the same Γ-order. Similarly for q_{j} a residue. Thus the entries in table one with $c_{i}<(p-1) / 2$ of a residue column and a non-residue column correspond with the entires of a row and we have Result 1.3: there are $\phi\left(d_{i}\right) / 2$ values q such that $\Gamma c, q$ belongs to $d_{i}(\bmod p)$ for $d_{i}\left|p-1, d_{i}\right| p+1$, with Γ-order ∞ for $q \equiv c^{2}(\bmod p)$, and Γ-order p for $q \equiv 0(\bmod p)$.
6.0 Results applied to the Fibonacci sequence. Let $c=1, q=5$. Since 5 is a non-residue for p of the form $10 n \pm 3$ and a residue for $p=10 n \pm 1$, the maximal entry point for the former is $p+1$ and for the latter $p-1$. Since $c \neq p$ and $q \neq p$ for $p>5$, the probability that the entry point is maximal for $p=10 n \pm 3$ is
and for p of the form $10 n \pm 1$,

$$
\begin{aligned}
& \phi(p+1) /(p-1) \\
& \phi(p-1) /(p-3)
\end{aligned}
$$

For $p<3000$, over primes of the form $10 n \pm 3$,

$$
\sum \frac{\phi(p+1)}{p-1}=87.78
$$

as compared with 88 primes of that form with maximal entry points.
Over primes of the form $10 n \pm 1$,

$$
\sum \frac{\phi(p-1)}{p-3}=74.25
$$

as compared to 76 with maximal entry points.
Entry Points of $p=13$ for $\left\{\Gamma^{n} c_{i} q_{i}\right\}$

$c{ }^{q}$	1	2	3	4	5	6	7	8	9	10	11	12
1	∞	7	12	6	7	14	14	14	12	3	7	4
2	3	14	6	∞	7	14	7	7	4	12	14	12
3	12	14	12	4	7	7	14	7	∞	6	14	3
4	12	7	∞	3	14	7	7	14	12	4	14	6
5	4	7	3	12	14	14	14	7	6	12	7	∞
6	6	14	4.	12	14	7	7	14	3	∞	7	12

(see properties 2.1.1-2.1.5)

REFERENCES

1. Brother U. Alfred, "Additional Factors of the Fibonacci and Lucas Series," The Fibonacci Quarterly, Vol. 1, No. 1, Feb. 1963, pp. 34-42.
2. D. D. Wall, "Fibonacci Series Modulo m," The American Math. Monthly, Vol. 67, No. 6, June-July, 1960, pp. 525-432.
