ENTRY POINTS OF THE FIBONACCI SEQUENCE AND THE EULER ϕ FUNCTION

JOSEPH J. HEED and LUCILLE A. KELLY Norwich University, Northfield, Vermont 05663

There is an interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci numbers modulo a prime.

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the *b*-mal expansion of 1/p is of length d_i in $\phi(d_i)$ incongruent bases modulo p where $d_i|p-1$ and ϕ is Euler's totient function. A similar statement can be made about certain classes of linear recursive sequences modulo p.

1.0 Let $\Gamma^n c, q$ be the n^{th} term of a linear recursive sequence,

$$\Gamma^{n}c,q = \begin{cases} \frac{(c+\sqrt{q})^{n}-(c-\sqrt{q})^{n}}{2\sqrt{q}} & \text{for } q \neq c^{2} \pmod{4} \\ \frac{\left(\frac{c+\sqrt{q}}{2}\right)^{n}-\left(\frac{c-\sqrt{q}}{2}\right)^{n}}{\sqrt{q}} & \text{for } q \equiv c^{2} \pmod{4} \end{cases}$$

yielding the sequences defined by

$$\Gamma^{n} = \begin{cases} 2c\Gamma^{n-1} + (q-c^{2})\Gamma^{n-2} \\ c\Gamma^{n-1} + \frac{q-c^{2}}{4}\Gamma^{n-2} \end{cases}$$

with initial values 1, 2c or 1, c.

For c = 1, q = 5 we have the Fibonacci sequence.

We are interested in the entry points of these sequences, modulo p, a prime.

Borrowing the analogy, we will say that $\Gamma c,q$ belongs to the exponent x modulo p, if

 $\rho | \Gamma^x c, q, \rho \not | \Gamma^y c, q \quad \text{for } y < x.$

The main results are:

- 1.1 For q a quadratic non-residue of p,c ranging from 1 to p, there are $\phi(d_i)$ values c such that $\Gamma c,q$ belongs to the exponent d_i modulo p, where $d_i | p + 1, d_i \neq 1$.
- 1.2 For q a quadratic residue of p,c ranging from 1 to p, there are $\phi(d_i)$ values c such that $\Gamma c,q$ belongs to d_i modulo $p, d_i | p 1, d_i \neq 1$, and two values for which the sequence is not divisible by p at all.
- 1.3 For c fixed, $c \neq 0 \pmod{p}$, q ranging from 1 to p, for each divisor of p 1 and p + 1, except 1 and 2, there are $\phi(d_i)/2$ values of q such that $\Gamma c,q$ belongs to $d_i \mod p$. In addition there is one value such that $\Gamma c,q$ belongs to p (for q = p) and one for which the sequence is not divisible by p at all (for $q \equiv c^2 \mod p$).
- 1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form $10n \pm 1$ the entry point of the Fibonacci sequence should be maximal, (p 1), on an average

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\phi(p_i - 1)}{p_i - 3}$$

over primes of that form; and the entry point should be maximal, (p + 1), on an average

ENTRY POINTS OF THE FIBONACCI SEQUENCE

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{\phi(p_i + 1)}{p_i - 1}$$

over primes of the form $10n \pm 3$. Investigations of entry points of primes less than 3000 [1,2] show a remarkably close correspondence with these theoretical values.

Number of Maximal Entry Points for p < 3000

	Predicted	Observed		
$\Sigma \phi(p-1)/p-3 =$	74.25	76		
$\Sigma \phi(p+1)/p - 1 =$	87.78	88		

2.0 Consider the sequences $\{\Gamma^n c, q\}$ modulo p, where c and q range over the reduced residue classes modulo p. Let d be the exponent to which $\Gamma c, q$ belongs modulo p.

The following can easily be established:

- 2.1.1 If $p | \Gamma^n c, q$, then $p | \Gamma^n c, q + p$ and $p | \Gamma^n c + p, q$.
- 2.1.2 For $c \equiv 0 \pmod{p}$, d = 2.
- 2.1.3 For $q \equiv 0, c \neq 0 \pmod{p}, d = p$.
- 2.1.4 For $c_i + c_j \equiv 0 \pmod{p}$, $d_i = d_j$.
- 2.1.5 For $q \equiv c^2 \pmod{p}$, $d = \infty$.
- 2.2 Let $a = c + \sqrt{q}$, $\overline{a} = c \sqrt{q}$. If $\Gamma c, q$ belongs to the exponent $k \pmod{p}$, we say a has Γ -order k. That is $a^k \overline{a}^k \equiv 0 \pmod{p}$, $a^m \overline{a}^m \neq 0 \pmod{p}$ for m < k, $m \neq 0$.

We wish to determine the smallest d such that

 $a^d \equiv \overline{a}^d \pmod{p}$.

We consider two cases, q a quadratic non-residue of p, and q a residue.

- 3.0 Case 1, q a quadratic non-residue of p. Construct $GF(p^2)$ with typical element $c + k\sqrt{q}$ (note: $k^2q \equiv \hat{q} \pmod{p}$), a non-residue). For some c', q', $a = c' + \sqrt{q'}$ is of order $p^2 1$ since the multiplicative group of $GF(p^2)$ is cyclic.
- 3.1 We show that $\overline{a} = aP$.

The conjugate of a can be defined as that element \overline{a} such that $a\overline{a}$ and $a + \overline{a}$ are both rational, i.e., elements of GF(p). We know that in GF(p) there are $\phi(d_i)$ elements of order d_i , $d_i|p - 1$, and that $\Sigma \phi(d_i) = p - 1$, accounting for all the non-zero elements of GF(p). Thus the elements of $GF(p^2)$ which are in GF(p) are characterized by orders which divide p - 1, i.e.,

$$a^{k(p+1)}, \quad k = 1, 2, \dots, p-1.$$

3.1.1 Since a is of order $p^2 - 1$, $a \cdot a^p$ is of order p - 1, thus is rational.

3.1.2 To show: $a + a^{p}$ is of order dividing p - 1. Expanding $(a + a^{p})^{p-1}$, and noticing that $\binom{p-1}{k} \equiv (-1)^{k} \mod p$, we obtain $(a + a^{p})^{p-1} \equiv a^{p-1} + \binom{p-1}{1} a^{2p-2} + \dots + a^{p(p-1)} \equiv a^{p-1} - a^{2p-2} + \dots + a^{p(p-1)}$ $\equiv a^{p-1}(1 - a^{p-1} + (a^{p-1})^{2} - \dots + (a^{p-1})^{p-1} - (a^{p-1})^{p} + (a^{p-1})^{p})$ $\equiv a^{p-1} \left[\frac{(1 - (a^{p-1})^{p+1})}{1 + a^{p-1}} + (a^{p-1})^{p} \right] \equiv a^{p-1} \left[\frac{1 - a^{p^{2}-1}}{1 + a^{p-1}} + a^{p^{2}-p} \right]$ $\equiv a^{p-1} a^{p^{2}-p} = a^{p^{2}-1} \equiv 1 \mod p$.

Thus $a + a^p$ is of order dividing p - 1 and is rational. It follows that $\overline{a} = a^p$.

AND THE EULER ϕ FUNCTION

3.1.3 It can similarly be shown that $\overline{a}^a = a^{ap}$, unless *a* is a multiple of p + 1. In that case a^a is rational and self conjugate, cf. § 4.0.

Let $\overline{a}^a = a^{ap}$. Then $(a^a)^k \equiv (a^{ap})^k$ for $a^{apk} - a^{ak} \equiv 0$, $a^{ak(p-1)} \equiv 1 \pmod{p}$, and $ak \equiv 0 \pmod{p+1}$, since a is of order $p^2 - 1$. k is a divisor of p + 1, say, d_i . Let $nd_i = p + 1$, so that n is the smallest non-zero solution to $xd_i \equiv 0$ mod (p + 1) (i.e., a^n has Γ -order d_i).

If $(tn)d_i \equiv 0 \pmod{p+1}$, where $(t, d_i) = m$, t = t'm, $d_i = d_im$ and $d_i|p+1$ with $d_i < d_i$, then

$$(tn)d_i \equiv 0 \pmod{p+1}$$

and (tn) is a solution to $xd_j \equiv 0 \pmod{p+1}$ with $d_j < d_i$. x = tn, $t = 1, 2, \cdots$, are solutions to $xd_i \equiv 0 \pmod{p+1}$, and are primitive solutions for $(t, d_i) = 1$. There are exactly $\phi(d_i)$ of these less than d_i . For each of the $\phi(d_i)$ of these tn values, $tn , <math>a^{tn}$ has Γ -order d_i . Consequently, for every divisor $d_i \neq 1$ of p + 1, there are $\phi(d_i)$ values $a , such that <math>a^a$ has Γ -order d_i .

3.3 We wish to relate the elements in the tables below:

a	a ^{1+(p+1)}	$a^{1+k(p+1)}$	
a ²			
		 - (1-(
a ^a		$a^{a+k(p+1)}$	
n+1	2(n+1)	 	 $n^2 - 1$
a^{p+1}	$a^{2(p+1)}$		a ^r -

NOTE: The elements of the last row of table two are rational. The elements of columns two through p-1 are rational multiples of the elements of the first column, in which for the exponent less than (p + 1), there are $\phi(d_i)$ elements of Γ -order d_i . Thus the Γ -orders of the elements in the first p rows are equal by rows and divide p + 1. Since a is of order $p^2 - 1$, all $a + b\sqrt{q}$ are represented by some power of a. For $c_i + \sqrt{q_i}$, q_i a non-residue, there is some $a^k = c_i + b\sqrt{q} \equiv c_i + \sqrt{q_i}$ (mod p).

3.3.1 If $a^k = c_i + \sqrt{q_i}$ and $a^m = c_j + \sqrt{q_i}$, then a^k and a^m are not in the same row in table two, for if

$$a^{k} = a^{x+y_{1}(p+1)}$$
 $a^{m} = a^{x+y_{2}(p+1)}$ $x < p+1$

then

$$c_i + \sqrt{q_i} = a^{x+y_1(p+1)}, \quad c_i + \sqrt{q_i} = a^{x+y_2(p+1)}$$

subtracting,

 $c_i - c_i = a^x (a^{y_1(p+1)} - a^{y_2(p+1)})$

and a^x is rational, i.e., x = p + 1, contrary to hypothesis.

3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the q_i column of table one, indicating that for q_i a non-residue, c_i ranging from 1 to p there are $\phi(d_i)$, $d_i | p + 1$ elements,

ENTRY POINTS OF THE FIBONACCI SEQUENCE AND THE EULER ϕ FUNCTION

 $c_i + \sqrt{q_i}$, of Γ -order d_i (Result 1.1).

4.0 Case 2, q a quadratic residue of p. Consider the elements of GF(p). Let $\beta_i = a_i + b$, where $b \equiv \sqrt{q} \pmod{p}$, and call $\overline{\beta}_i = a_i - b$. Let $\gamma_i = \beta_i \overline{\beta_i}^{-1} = (a_i + b)/(a_i - b)$. If $(a_i + b)/(a_i - b) \equiv (a_j + b)/(a_j - b)$, then $a_i \equiv a_j$, and if a ranges through the values 0 to p - 1 the γ_i values generated are distinct. Provided $a \neq \pm b \pmod{p}$, these are the elements 2 through p - 1 of GF(p).

ments 2 through p - 1 of GF(p). From $((a_i + b)/(a_i - b))^k = \gamma_i^k$ it is clear that the Γ -orders of β correspond with the orders of γ . There are $\phi(d_i)$ elements, γ_i , of order d_i for each divisor of p - 1 ($d_i \neq 1$), thus $\phi(d_i)$ elements β_i with Γ -orders d_i for each divisor of p - 1 except 1. In addition, for $a \equiv \pm b \pmod{p}$, i.e., $q \equiv c^2 \pmod{p}$, the equation $(a_i + b)^k \equiv (a_i - b)^k$ has no solutions and we say the Γ -order of β is ∞ . (2.1.5). (Result 1.2.)

5.0 To establish Result 1.3, relating to the rows of table one, consider $c + \sqrt{q_i}$ as q_i ranges from 1 to p - 1.

 $c + \sqrt{q_i}$ has the same Γ -order as $ck + \sqrt{k^2q}$ and as $(ck)' + \sqrt{k^2q}$, where $ck + (ck)' \equiv 0 \pmod{p}$ (2.1.4). Choose q_j a non-residue, $c_i < (p - 1)/2$, and k such that $kc_i \equiv c$. Then k^2q_j is a non-residue and $k(c_i + \sqrt{q_j}) \equiv c + \sqrt{q_i}$ and has the same Γ -order. Similarly for q_j a residue. Thus the entries in table one with $c_i < (p - 1)/2$ of a residue column and a non-residue column correspond with the entires of a row and we have Result 1.3: there are $\phi(d_i)/2$ values q such that $\Gamma c_i q$ belongs to $d_i \pmod{p}$ for $d_i | p - 1, d_i | p + 1$, with Γ -order ∞ for $q \equiv c^2 \pmod{p}$, and Γ -order p for $q \equiv 0 \pmod{p}$.

6.0 Results applied to the Fibonacci sequence. Let c = 1, q = 5. Since 5 is a non-residue for p of the form $10n \pm 3$ and a residue for $p = 10n \pm 1$, the maximal entry point for the former is p + 1 and for the latter p - 1. Since $c \neq p$ and $q \neq p$ for p > 5, the probability that the entry point is maximal for $p = 10n \pm 3$ is

and for p of the form $10n \pm 1$,

$$\phi(p+1)/(p-1),$$

 $\phi(n-1)/(n-3).$

For p < 3000, over primes of the form $10n \pm 3$,

$$\sum_{p=1}^{\infty} \frac{\phi(p+1)}{p-1} = 87.78,$$

as compared with 88 primes of that form with maximal entry points. Over primes of the form $10n \pm 1$,

$$\sum \frac{\phi(p-1)}{p-3} = 74.25,$$

Entry Points of n = 13 for $\{\Gamma^n c_i a_i\}$

as compared to 76 with maximal entry points.

λ	q	1	2	3	4	5	6	7	8	9	10	11	12
1		òò	7	12	6	7	14	14	14	12	3	7	4
2		3	14	6	~	7	14	7	7	4	12	14	12
3		12	14	12	4	7	7	14	7	~	6	14	3
4		12	7	00	3	14	7	7	14	12	4	14	6
5		4	7	3	12	14	14	14	7	6	12	7	00
6		6	14	4	12	14	7	7	14	3	8	7	12

(see properties 2.1.1 - 2.1.5)

REFERENCES

- Brother U. Alfred, "Additional Factors of the Fibonacci and Lucas Series," *The Fibonacci Quarterly*, Vol. 1, No. 1, Feb. 1963, pp. 34–42.
- D. D. Wall, "Fibonacci Series Modulo m," The American Math. Monthly, Vol. 67, No. 6, June-July, 1960, pp. 525-432.
