ENTRY POINTS OF THE FIBONACCI SEQUENCE
AND THE EULER ¢ FUNCTION

JOSEPH J. HEED and LUCILLE A. KELLY
Norwich University, Northfield, Vermont 05663

There is an interesting analogy between primitive roots of a prime and the maximal entry points of Fibonacci num-
bers modulo a prime,

Expressed in terms of the periods of reciprocals of primes in various base representations, the period of the 5-mal
expansion of 1/p is of length d; in ¢(d;) incongruent bases modulo p where d; |p — 1 and ¢ is Euler’s totient function.
A similar statement can be made about certain classes of linear recursive sequences modulo p.

1.0 LetT'"c,q be then t term of a linear recursive sequence,
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N

rre | (248"~ (58)’

7 for g = ¢? (mod 4)

forg # c? (mod 4)

yielding the sequences defined by
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with initial values 1, 2c or 1, c.
For ¢ = 1, g = 5 we have the Fibonacci sequence.
We are interested in the entry points of these sequences, modulo p, a prime.
Borrowing the analogy, we will say that I" c,g belongs to the exponent x modulo p, if

p\lT¥ca, pyTYeq fory < x
The main results are:
1.1 For g a quadratic non-residue of p,c ranging from 1 to p, there are ¢ (d;) values ¢ such that I"¢,g belongs to the
exponent d; modulo p, where d;|p + 7, d; # 1.

1.2 For g a quadratic residue of p,c ranging from 1 to p, there are ¢(d;) values ¢ such that I" c,g belongs to d; mod-
ulo p, d;|p — 1, d; # 1, and two values for which the sequence is not divisible by p at all.

1.3 For¢ fixed, c#0 (mod p), g ranging from 1 to p, for each divisor of p — 1 and p +'1, except 1 and 2, there are
¢(d;)/2 values of g such that ' ¢,g belongs to d; module p. In addition there is one value such that I"¢,q be-
longs to p (for g = p) and one for which the sequence is not divisible by p at all (forg =c? mod p).

1.4 Applying these results to the Fibonacci sequence, probabilistic arguments suggest that for primes of the form
10n + 1 the entry point of the Fibonacci sequence should be maximal, (p — 7/, on an average
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over primes of that form; and the entry point should be maximal, (p + 7), on an average
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over primes of the form 107 + 3. Investigations of entry points of primes less than 3000 [1,2] show a remarkably
close correspondence with these theoretical values.
Number of Maximal Entry Points for p < 3000
Predicted Observed
Zolp—-1)/p-3 = 17425 76
Zolp+1)/p—-1= 8778 88

2.0 Consider the sequences {I‘"c,q} modulo p, where ¢ and g range over the reduced residue classes module p. Let
d be the exponent to which I ¢,g belongs modulo p.

im L
n

The following can easily be established:
2.1.1 1fp|T"cq, thenp|T'"c,g +pand p|T'"c +p,gq.
2.1.2 Forc=0(modp),d=2.
2.1.3 Forg=0,c#0(modp),d=p.
2.1.4 Forc;+¢;j=0(modp),d;=d;.
2.1.5 Forg=c?(modp),d=.

2.2 Leta=c++/g,a=c—/g. 1§ cq belongs to the exponent & (mod p), we say a has I -order k. That is
ak_ak = 0(modp), a™ —a™ %0 (modp) form <k m # 0.

We wish to determine the smallest 2 such that
a? = a@? (mod o).

We consider two cases, g a quadratic non-residue of p, and ¢ a residue.

3.0 Case 1, g aquadratic non-residue of p. Construct GF(p 2) with typical element ¢ + k+/g (note: kzq s;‘ (mod p),
anon-residue). Forsomec’, g’ a=c’+ /g’ is of orderp2 — 1 since the multiplicative group of GF(p<) is cyclic.

3.1 We show thata = aP.

The conjugate of a can be defined as that element a such that aa and a + a areboth rational, i.e., elements of
GF(p). We know that in GF(p) there are ¢(d;) elements of order d;, d;|p — 7, and that Z ¢ (d;) = p — 1, acceunting
for all the non-zero elements of GF(p). Thus the elements of GF(p2) which are in GF(p) are characterized by erders

which divide p — 7, i.e.,
ak(P'H)’ k=1 2, e, p = 7.

3.1.1 Since ais of orderpz — 1, a-aP is of order p — 7, thus is rational.

3.1.2 To show: a +aP is of order dividingp — 7.
Expanding (a + a?)P~!, and noticing that (P . 1 ) = (—17)* mod p, we obtain

(a+aP)P! = gp1 +(p " 1] @2P2 4oy gP(P-1) = Pl _q20-2 ., qP(P-1)
= P U1 aP T 4 (@P 1) et (@ P (@) 4 (P )

_1,p+1 2_gq
= ap":l [(_I_:LQP___LJ + (ap_I)p] = ap_1 L—i— +apz_p}
1+aP1 1+aP1
= aPlgP" P = gP'-1 = Tmodp.

Thus a + a? is of order dividing p — 1 and is rational. It follows that @ = a? .
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3.1.3 [Itcansimilarly be shown that @® = a®, unless a is a multiple of p + 7. In that case a® is rational and self con-
jugate, cf. §4.0.

Let@®=a®. Then (a®)* = (a®)* for aP* _ %% = 0, a®*(P~1) — 1 (mod p), and ak = 0 (mod p + 1), since ais
of order p2 — 1. k is a divisor of p + 1, say, d;. Let nd; =p + 1, so that n is the smallest non-zero solution to xd; =0
mod (p + 7) (i.e., a” has I" -order d;).

If (tn)d; =0 (mod p + 7), where (¢, d;) =m, t=t'm, d; = dim and d;|p + 1 with d; < d;, then

(tn)d; =0  (modp +1)

and (tn) is a solution to xd; = 0 (mod p + 1) with d; < d;..

x=tn, t=1,2, - aresolutions toxd; = 0 (mod p + 1), and are primitive solutions for (t, d;) = 1. There are exact-
ly ¢(d;) of these less than d;. For each of the ¢(d;) of these tn values, tn <p + 1, a® has I'-order d;.

Consequently, for every divisor d; £ 1 of p + 1, there are ¢ (d; ) valuesa < p + 1, such that a® has I'-order d;.

3.3 We wish to relate the elements in the tables below:

Table 1
¢ [ J
1 I |
2 ————— — — ]
¢ c+/g;
p I I
Table 2
alt(p+1) a1+k(p+1)
2
aé adtk(pt1)
ap+1 a2(p+1) ap2—1

NOTE: The elements of the last row of table two are rational. The elements of columns two through p ~ 1 _are
rational multiples of the elements of the first column, in which for the exponent less than (p + 1), there are ¢(d;)
élements of I"-order ;. Thus the I-orders of the efements in the first p rows are equal by rows and divide p + 1.
Since a is of order p> — 1, all a + b\/g are represented by some power of a. For ¢; #\/g;, g; a non-residue, there is
some a® = ¢; + b\/g =c; +~/g; (mod p). ‘

33.1 Ifak = ¢; +~/g; and a™ =cj*/g;, then a* and a™ are not in the same row in table two, for if
ak _ ax+y!(p+1) a™ = x+y, (p+1) x <p+l

Il

then
C; + q; = ax+yl (P+1)’ cj + q’ = ax+y2 (p+1)

subtracting,
Ci —_ cj = ax(ayl(P+1) —_ ayz(P"'I)}

and a” is rational, i.e., x = p + 1, contrary to hypothesis.

3.2.2 We thus have a one-to-one mapping between elements of distinct rows of table two and elements of the g; col-
umn of table one, indicating that for g; a non-residue, ¢; ranging from 1 to p there are ¢(d;), d;|p + 1 elements,
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¢; */q;, of T-order d; (Result 1.1).

4.0 Case 2, g a quadratic residue ofp Consider the elements of GF(p). Let §; = a; + b, where b = /g (mod p), and
call B; =a; — b. Lety; = B;8; = (a; + b)/(a; — b). \f (a; + b)/(a; — b) = (aj + b)/{aj— b), then a; = a;, and 'if a

ranges through the values 0 to p — 1 the +y; values generated are distinct. Provided a # #b (mod p), these are the ele-

ments 2 through g — 1 of GF(p)

From ((a; + b)/a; — b))k = 'y, it is clear that the I"-orders of 8 correspond with the orders of -y. There are  ¢(d;)
elements,y;, of order d; for each divisor of p — 1 (d; # 1), thus ¢(d;) elements §; with I" ordersd for each divisor of
p — 1 except 1. In addition, for a = b (mod p), i.e., g = 02 (mod p), the equation (a; +h)k= (a; — 5)* has no solu-
tions and we say the I"-order of Bis . (2.1.5). (Result 1.2.)

5.0 To establish Result 1.3, relating to the rows of table one, consider ¢ + \/g; as g; ranges from 1top — 1.
¢ + \/g; has the same I"-order as ck + </k*q and as (ck)’ + \/k*q, where ck + (ck)’=0 (mod p) (2.1.4). Choose
g; a non-residue, ¢; < (p — 1)/2, and & such that k; =c. Then k2g; is a non-residue and (c; +\/g; g;)=c ++/q; and

has the same I"-order. Similarly for g; a residue. Thus the entries in table one with¢; < (p—1)/2 of a resndue column
and a non-residue column correspmlnd with the entires of a row and we have Result 1.3: there are @ (d;)/2 valuesgq

such that I"c,g belongs to d; (mod p) ford;|p — 17,0;|p # 1, with I -order « for ¢ =¢2 (mod p), and I" -order p for
g =0 (mod p).

6.0 Results applied to the Fibonacci sequence. Let ¢ = 1, g = 5. Since 5 is a non-residue for p of the form 10n . 3
and a residue for p = 10n + 1, the maximal entry point for the former isp + 1 and for the latter p — 1. Since ¢ #p
and g # p for p > 5, the probability that the entry point is maximal forp = 10n £3 is

dlp+1)/p—1),

olp — 1)/(p - 3).
Forp < 3000, over primes of the form 107 +3,

ZM = 87.78,
as compared with 88 primes of that form with maX|maI entry points.

Over primes of the form 10n +1,
Yo .z,

as compared to 76 with maximal entry paints.
Entry Points of p = 13 for {I""¢;q; }

and for p of the form 10n £+ 1,

A7 1 2 3 4 5 § 1 8 9 10 11 12
1 =7 12 6 7 14 14 14 17 3 T 3§
2 3 14 6 ~ 7 14 7 71 4 12 14 12
3 12 14 12 4 7 1 14 71 « 6 14 3
4 12 71 « 3 14 1 7 14 12 4 14 6
5 4 7 3 12 14 14 14 7 6 12 1
6 6 14 4 12 14 7 71 14 3 = 7 12

( see properties 2.1.1 — 2.1.5)

REFERENCES

1. Brother U. Alfred, “Additional Factors of the Fibonacci and Lucas Series,” The Fibonacci Quarterly, Vol. 1, No.

1, Feb. 1963, pp. 34—42.
2. D. D. Wall, “Fibonacci Series Modulo m,” The American Math. Monthly, Vol. 67, No. 6, June-July, 1960, pp.

525-432.



