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Let Fn be the A? Fibonacci number, where F} = 1, F2 = 2 and Fn+2 = Fn+i + Fn, Vn <E/I/. It is well known 
that 

n^F
n+1/Fn = *= W + y/5 ) , 

the larger root of the polynomial equation x2 = x + 1. Using the mappingg: N'-+N, 

g(r) = [ra + %], 
\.e.,g(r) isthe closest integer t o r n , we can give an alternate formulation of Fn. It is easy to show that, 

9<Fn) = Fn+l, V" ^ N, 
so as Fi = 7, 

Fn= g^dlVn <zN, 
where we set 

g°(r) = r, and gn(r) = gfg^fr}}, Vn e N. 
Hence the Fibonacci sequence is 

(FJ = (g^d)). 
For each r e N, we will show that the sequence Ig71'1^)) has the Fibonacci recursive property 

gn+1(r) =gn(r)+gn^(rKVh e N. 
K. Stolarsky constructed a table of these sequences to cover the positive integers in the following way. 

V m,n G N, we define: 

(a) S(m, 1) = least positive integer not in T(m) = {S(/,j): j e Nf i = 1', —, m - / } ; 
(b) S(m,n + 1) = g(S(m,n)). 

Effectively what is being constructed is a table of sequencesgn~ (r), where r is least integer not in an earlier 
sequence and,r= 1 is the starting value for the first sequence, the Fibonacci sequence. Obviously, by construc-
tion S will cover N. 

In Table 1, we list the 100 values of S(m,n) for/77,/7 < 10. It is easily shown (Theorem 1), that each positive 
integer r occurs exactly once as a value S(m,n), and that S(m,n +2) - S(m,n + 1) = S(mrn), (Lemma 1). 
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Stolarsky observed in his table, as far as he had calculated, that the differences between the values in col-
umns 2 and 1 of a given row, S(m,2) - S(m,l), were always integers that had previously occurred in one of 
these two columns. He conjectured that this was always the case. J. Butcher conjectured further, on the basis 
of computation, that this correspondence was one-to-one. 

In this paper we prove both these conjectures, as well as constructing other interesting properties of S(m,n). 
To facilitate our construction, we define the following functions: 

d:N-» N, dfm) = S(m,2) - Sfm, 1); 

h: N-^ (-1/2fy2)f Mr) = ra-gfr); 
and 

k:N->N,k(r) = [1-\WcL\2Mr)\] . 

Hence d(m) is the difference between columns 2 and 1 in row/w, and hfr) is the "closeness" of rato the near-
est integer. 

We will show firstly that S is a one-to-one and onto map N x N to N: 

Theorem 1. 
Vr G N, 3 1m, n G N : r = S(m ,n) . 

We will use this result to establish Stdlarsky's conjecture: 

Theorem 2, 
Vm e N,3n e N: d(m) = S(n,1) or d(m) = S(n,2). 

We will then improve Theorem 1 by finding explicit invertible formulae relating m,n to S(m,n): 

Theorem 3. 
S(m,1) = [ma2 -1/2a],S(m,n) = gn~l(S(mf1))/ Vm,n e N, 

n = k(S(m,n)), m = [S(m,n)a-n~l+ 1/2a] 
2 

Further we note that the sequence m, d(m), S(m,1) can be approximated by m, ma and ma , or more 
explicitly: 

Theorem 4 
For Mm) €= l-%, -1/2a2), 

d(m) = g(m)- 7, S(m, 1) = g(d(m)) - 1; 

for him) G (-1/2a-2, ha'1), 

dim) = glm) - 1, SfmJ) = g(d(m» + 1; 

and for h(m) e f^a'1, %), 

d(m) = g(m), S(m,1) = g(d(m» - / . 

This theorem leads to explicit invertible formulae relating dfm) to S(n, 1) and S(nf2): 

Theorem 5. 
For h(m) e= (-1/2,

 1/2a~3), 
dfm) = Sdma'1 + 1/2], 1); 

for h(m) G (1/2a-3, V2), 
dfm) = Sffma~2 + %], 2) ; 

while 

S(m,1) = d([ma+1/2a-2]l and Sfm,2) = dffma2 - Ka'1]). 

This leads finally to establishing Butcher's conjecture: 

Theorem 6. 

{dfm): m G N\ = {S(m,D : m G N) U {s(m,2) : m G N) . 
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We will now prove these theorems via the following lemmas. We will frequently use identities based on 
a2 = a+ 1, of the form 

an+1 = Fna+Fn_u Vn e N t 

a~n = (-l)n(Fn- Fn_ia), Vn e N. 
Lemma 1. Vr e /I/, g2(r) = g(r) + r. 
Proof. ar - 1/2 < gfr) < ar + 1/2 , 

=> agfr) - % < g2(r) < agfr) + 1/2, 
=> (a- l)g(r)-V2 < g2(r)-g(r) < (a- Vg(r) + % . 

But 
a(a- 1)r- 1Ma- 1) < (a- 1)g(r) < a(a- 1)r + 1/2(a- 1), 

and a(a- V = a2 - a = 7, 
so 

r - 1/2(a - 1) - 1/2 < g2(r) - gfr) < r + h(a- 1) + 1/2 , 
=> r - 1 < r - 1/2a < g2(r) - gfr) < r + 1Aa < r + 1. 

Hence as# (r) - gfr) is integral, ̂  (r) - gfr) = r, and the result of the lemma follows. 

Corollary. S(l,n) = Fn . 
Proof. TfD = yp =+:S(1J) = 1 = Fly Sfl,2) = g(1) = 2 = F2. 

By Lemma 1, 
S(1, n+2) = g2fS(hn)) = g(S(l,n))+S(l,n) = S(1, n + 1) + S(l,n), Vn e N 

so by induction, 
S(t, n +2) = Fn+1 +Fn = Fn+2, Vn e N. 

As we move from left to right across the table we find that each valueg(n)a gives a better approximation to 
an integer (g2(n)) than did na, (gin)). Explicitly we have the following recursive result. 

Lemma 2, Vn e N, h(g(n)) = -a~1h(n). 
Proof. h(g(n» = ag(n)-g2(n)t 

= ag(n) (mod 1), 
= a2n- ah(n) (mod 1), 
s an - ah(n) (modi), (as a2 = a+ 1), 
= h(n)- ah(n) (mod 1), 
= (1-a)h(n) (modi). 

l-a= -a'1, \hg(n)\ < 1/2, ^a^Mn^ < %, 
so h(g(n)) = -a~1h(n). 

Lemma 2 enables us to prove the following relation between S(m,n) and n, namely that r occurs in the 
k(r)th column of the table. 

Lemma 3. k(S(m,n)) = n, V m, n e N. 

Proof Let r = [SfmJIaT1], and set e = ra - S(m,1). 0 < e < 1. 

For m > 1, S(m,l) - 2 < gfr) < S(m,1) + /, so 

gfr) = S(m,1) or S(m,1) - 1. 

But gfr) e Tfm) as r < SfmJ), and S(m,7) 4 T(m) so 

gfr) = S(m,l)- 1, Vm > 1. 

Also g(O) = [%] = 0, S(1,1) - 7 = 0, so 
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g(r) = S(m,1) - 1, V m e N. 

Hence S(m,7) = far + 1/2] + 1, 

= [S(m,1) + 1/2 - e] + 1 

Further, h(S(m,D) s aS(m,1) (mod 1), 

= a~lS(m,1) (mod 1), (as a = 1 + a _ i ) , 

= -ea"1 (mod 1). 
Hence, for e < %a, 

h(S(m,D) = -ea'1 < -1/2ar1 , 
and for e > 1/2a, 

h(S(m,1» = 1 - ea-l > 7 - a'1 > £ a _ i , 
Thus in both cases 

\h(S(m,1))\ e VAaT1,*) => k(S(m,D) = 1. 

Now using Lemma 2, k(S(m,n + 1)) = k(S(m,n)) + i, so by induction, k(S(m,n)) = n. 
This means an integer r cannot appear in two different columns. In the next lemma, we show that no inte-

ger can appear more than once in any given column. 

Lemma 4. S(m + 1, n) > S(m,n), V m,n e N. 

Proof. By definition S(m,l) is not the least integer in T(m), and S(m + 1, 1) the least integer not in 
Tim + V D Tim) u {S(m, 1)), so S(m + 1,1)> S(m, 1) + 1. Also 

S(m + 1,2) = g(S(m + 1,V), 

> aS(m + l,1)-1/2, 

> a(S(m,1) + l)-1/2, 

> aS(m,1) + 1/2, 

> g(S(m,D), 

= S(m,2), 

\.e.,S(m + 1,2) >S(m,2). Now by induction, using Lemma 1, 

S(m + 1,n +2) = S(m + 1,n + 1)+S(m + l,n) > S(m, n + 1)+S(m,n) 

= S(m,n+2). Vm,n e N. 

Combining this final result with the two initial results we prove the lemma. 
Lemmas 3 and 4 now enable us to prove Theorem 1. By the sieve type definition S: N x N -> N must be 

onto. If S(mi, n\) = S(m2, 112) = r say, then by Lemma 3, n^= ri2 = k(r) and then by Lemma 4m 1 = m2. 
Hence S is one-to-one. We have proved: 

Theorem 1. V r e N, 3 1m, n e N : r = S(m,n). 

Stolarsky's conjecture can now be established by proving one more Lemma. 

Lemma 5. k(d(m)) < 2, V m e N. 

Proof. h(d(m» = ad(m) (mod 1), 

= aS(m,2)-aS(m,1) (modi) , 

= h(S(m,2))-h(S(m,D) (mod 1), 

Now by Lemma 2, h(S(m,2» = -a~1h(S(m,D), so 
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h(d(m» = -(l+a^hlSim.V) (mod 1), 

= -ah(S(m,V) (mod 1). 

Further h(S(m, V) e (-%, -ha'1) u (ha'1, 1/2) by Lemma 3, so 

h(d(m» = l-ah(S(m,V) if h(S(m,1))e (-fy-KaT1) 
and 

hfd(m)) = -1-ah(S(m,1)) if MSfm^m^f^a'1^), 
so in either case 

\h(d(m))\ = 1-a\h(S(m,1))\, 

> 1-1/2(L, 

= 1Aa'2. 
Hence k(d(m» < 2. 

As by Theorem 1, the value r = d(m) can occur in only one position, and as k(d(m)) < 2, by Lemma 3, d(m) 
appears in Column 1 or Column 2. Hence we have established our second theorem. 

Theorem 2. Vm G ^ J / i e N: d(rri) = S(n,1) or d(m) = S(n,2). 

We now return to improve the result of Theorem 1 by finding an explicit relationship between m,n and 
S(m,n). We note first 

Lemma 6. k([na2 - 1/2a]) = 1. 
Proof. Let r = [na2 - 1/2aJ. Now 

na - 1/2a = na- 1/2a (mod 1), 

= MM - ha (mod 1) . 

Also -2 < -1/2 - %a < MM - %a < 1/2 -
 7/2a < 0, so 

r = na - h(n) - t, 
where 

t = 2 for -% < MM < %a- 1 = -1/2a'2, 
and 

t = 1 for -%a~2 < MM < %. 
Further 

h(r) = ra (mod 1), 

= na - h(n)a- ta (mod 1), 

= 2na- h(n)a- ta (mod 1) , 

= h(n)(2-a)-ta (mod 1), 

= h(n)a -ta (mod 1). 

F o r - ^ < MM < -%a~2, 

t = 2 => -ta = -2a = -a3 (mod 1), 

- -1/2 < -y2a~2 - a'3 < h(n)a~2 - a'3 < ^Aa'4 - a"3 - -ha1, 
=> h(r) = Mn)a~2 - a'3 and k(r) = 1. 

For -y2a~2 <Mn)<1/2a'1 , 

t = 1 => -ta = - a = a'2 (mod 1) , 

=> ha1' < a~2(h(n)+1) < %t 

=> /?W = a~2f/7W * 1) and ArW = /. 
For Aa'1 < MM < 1/2, 
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t = 1 => -ta = -a = -a'1 (mod 1), 
^ -1/2 = 1/2a3 - a 1 < h(n) < %a~2 - a 1 < ^ a 1 , 
=> h(r) = a~2h(n) - a'1 and k(r) = I 

We can now show that the numbers [na2 - 1/2a] are the only integers occurring in Column 1. 

Lemma 7. S(n, 1) = [na2 - 1/2a]. 

Pro of. Let r = S(n, 1), th e n 
h(r + 1) = a(r + 1) (mod 1), 

= h(r) + a (mod 1). 
— 1 — 7 1 

Noting a = a = - a (mod 1) we find: f o r - & < h(r) < -1/2a~ , 
1/2a~3 < hM + aT1 < ha'1 => k(r + 1) > 1; 

and f o r - ^ c T ^ <h(r)<1/2, 
-%a~4 < h(r) - a'2 < %a3 - k(r + 1) > 1. 

Hence r+ 1 cannot be in Column 1, so Column 1 cannot contain two consecutive integers. 
Let tin) = [na2 - 1/2a], then 

na2 - 1/2a- 1 < t(n) < na2 - %a, 

no2 + a2 -1/2a- 1 < t(n + 1) < na2 + a2 - 1/2a, 
so 

na2 + a2 - %a- 1 - (na2 - %a) < tin + 1) - tin) < na2 + a2 - %a- (na2 - 1/2a- 1), 
and as 

na2 + a2 - 1/2a- / - (na2 - 1Aa) = a2 - 1 = a > 1, 
and 

na2 + a2 - 1/2a- (na2 - 7/2a- 1) = a2 +1 = a + 2 < 4, 
we have 

/ < t(n + l)- t(n) < 4. 

Hence t(n) and t(n + 1) are distinct integers whose difference is 2 or 3. They both occur in Column 1 (Lemmas 
6 and 3), so no other integer can occur in Column 1, as that would imply consecutive integers in Column 1. 

We can now specify S(m,n) with the following two lemmas. 

Lemma 8. S(m,n) = Sdn^a"1'1 + Fn_2h(S(m,V), V n e N. (Putting F0 = 1, F^ = 0.) 

Proof. Trivial for/7= /. 
AssumeS(m,n) = S(m,DaP'1 + Fn_2h(S(m,1)), for some/7 > 1, then 

S(m, n+1) = g(S(m,n)), 
= aSlm,n)+hlSlm,n)), 
= Sim, Van + Fn_2h(S(m, l))a + h(S(m,n». 

But, by Lemma 2, 
h(S(m,n)) = -a'1h(S(m,n - D), 

= (-a^r^fSfmM 
and 3sa-(n'1} = (-D^fF^ - Fn_2a), 

F^a+har^ = Fn-i. 
Hence 

S(m, n+1) = S(m, 1)an + Fn_t h(S(m, V). 

Thus, by induction, this result is true S//7 e N. 
From this result follows 

Lemma 9. m = [Sfm^ioT^1 + %a] . 

Proof. By Lemma 8, 



76 STOLARSKY'S DISTRIBUTION OF THE POSITIVE INTEGERS [FEB. 

\S(m,n)-S(mf1)an~l\ = Fn_2\h(S(m,l))\ < 1/2Fn_2.. 
Also, Fn_2 < an~2, so 

\S(m,n)-S(m,7)an-1\ < ha3. 
From Lemma 7 

ma2 - 1/2a- 1 < S(m,1) < ma2 - 1/2a, 
=> -ha'1 -a'2 < S(m,1)a~2 -m < -ha'1 . 

But, from above, 
-ha'3 < Simula'71-1 -S(m,1)<T2 < 1/2a'3, 

so adding 
-ha = -ha'1 - a2 - ha'3 < SfmsJaT"-1 - m < ha~3 - ha'1 

=> 0 < S(m,n)a~n~1 -m + ha<ha + ha'3 -ha'1 = a'1 < 7, 
=> m = [S(m/n)a~n~1 + ha] . 

This lemma concludes the results for Theorem 3, so combining the results of Lemmas 3, 7 and 9 we have: 

Theorem 3. S(m,7) = [ma2-ha], S(m,n) = g^Hslm,!)), Vm,n e N, 
n = k(S(m,n)), m -' [SfmjiJaT"-1 + ha] . 

We now examine formulae for d(m). 

Lemma 10. dim) = [ma-ha'1]. 
Proof. Let . , , 

elm) = [ma- ha ] , 
and se t y = ma- ha'1 - c(m), 0 < y < 1. 
As Sim, 1) = [ma2 - 1/2a], let 

e = ma2 -1/2a- S(m, 1), 0 < e < 1. 
Now 

e-y = m(a2 - a) + hla'1 -a) + c(m) - S(m, 1), 
= m-y2 + c(m)-$(m,1), 
= y2 (mod 1). 

Thus for e < ^ , y=e+1/2, 
Sim, 1) = c(m) + mf 

and for e > 1/2, y=e- y2/ 

Sim, 1) = elm) +m- 1. 
Further 

elm) + Sim, 1) = mla2 + a)- 1/2(a + a'1) - (e + y), 
= ma3 - 7/2fa3 -2)-(e + y), 
= lm-1/2)a3 +11-e-y), 

and 
Sim,2) = g(Slm,V), 

= aS(m,1)-h(S(m,V), 
= ma3 - %a2 -ea- h(S(m, 1)) . 

Combining these two results we find 
elm) + Sim, 1) - Sim,2) = h(a2 - a3) + lea-e-y)- h(S(m,!)) + !, 

= 1-y2a + (ea-e-y)-hfS(m,1)). 
ForO<e<h,y=e + h, 

c(m)+S(m,l)-S(m,2) = 7 - ha + ela-2) - 1/2 -h(S(m,D) e l-l,1-1/2a), 
and is integral, so 

elm) = S(m2)-S(m,1) = dim). 
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For 1/2 < e < 1, 

7 = e-%, 

c(m) + S(m,1) - S(m,2) = 1 - 1/2a+e(a-2) + 1/2 - h(S(m,V) G (%a- 1, 

and is integral, so 
c(m) = S(mJ) - S(m,1) = d(m). 

We can now formulate the relationship between m and d(m). 

Lemma 11. For h(m) G (~1/2, Aa'1), 
d(m) = g(m) - 1, 

for Mm) G (1/2a\1/2) 
d(m) = g(m). 

Proof. For h(m) G (-^M'1), 

g(m) = ma-h(m) G (ma- 1/2a , ma+ 1/2). 

Now this interval has length %a-l + & = £a < 1, and g(m) is integral, so 

g(m) = [ma- Aa'1] + 1 = d(m) + 1, 
by Lemma 10. 

For Mm) G (KaT1^), 
g(m) = ma-h(m) G (ma- 1/2/ma- 1/2a~ ). 

This interval has length 1/2 - 1/2a~1 = 1 - %a< 1, so 

g(m) = [ma - Aa'1] = d(m), 
Lemma 12. For h(m) G (-1/2,-

1/2a~2), 

h(d(m)) = -aT1(Mm)+lK k(d(m» = 1, 

iorh(m) G (-1/2a~2, 1/2a~3), 
h(d(m» = 1 - aT1 (h(m) + 1), k(d(m» = 1, 

for Mm) G (KaT3,^1), 
h(d(m)) = 1 - a'1 (Mm) + 1), k(d(m)) = 2, 

for Mm) G (Aa"1,1/.), 
h(d(m» = -a'1 (Mm)), k(d(m» = 2. 

Proof. From Lemma 11 
h(d(m)) = h(g(m) - SL), 

where c = 0 if Mm) > Aa'1, e = 1 otherwise. Hence 

h(d(m)) = ag(m)-asi (mod 1), 
= ma2 - ah(m) - ast (mod 1), 
= ma- ah(m) - ac (modi) , 
= h(m)(1 -a)-as. (mod 1), 

= -a'1 (Mm) + SL) (mod 1). 

For Mm) G (-%,-1/2a~2), s. = 1, 

=> -1/2 = -a'1(1 - 1/2a~2) < -a~1(Mm)+ 1) < -ha'1, 

=> h(d(m» = -a'^Mmt+D, k(d(m» = 1. 

For Mm) G (-1/2a~2, Aa'1), s. = 1, 

=> -1/2a = -a^d + Aa'1) < -a^Mmi+D < -1/2, 

=> Md(m)) = 1 -a~1(h(m)+ 1). 

In particular, if h(m) G (~y2a~ , 1/2a ) , 
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Aa'1 = 7-a'1(Aa'3 + 7) < hfd(m)) < 7 - a'U-Aa'2 + 7» = A => kfdfm)) = 7, 
and if him) e= (1AaT3, KaT1), 

Aa'1 = 7 - a'1 ma'1 + 7) < hfdfm)) < 7 - a'HAa'3 + 7) = Aa'1 => k(dfm)) = 2. 
For him) e (Aa'^A), Q=0, 

-'AcT1 < -a'1 h(m) < -Aa'2, 
*+ h(d(m» = -a"1 Mm), k(d(m» = 2. 

Now we can establish the relationship between d(m) and S(m,1). 
Lemma 13. Fox Mm) e (~1A, -Aa'2) u (Aa'^A), 

S(m,l) = gfdfm))- 7. 
For him) <E f-Aa'2, Aa'1) 

S(m,l) = gfdfm)) + 1. 
Proof. For him) e f-A,-Aa'2), 

g(d(m» = ad(m) - h(d(m))f 

= ag(m) - a+a~1(h(m)+ 1), (Lemmas 11 and 12), 
= ma2 - ah(m) -a + a^fhfm) + 7), 
= ma2 + (a-1 - a)(h(m) + 7), 
= ma2 - (h(m) + 7), 

=> ma2 - Aa = ma2 - (7 - Aa~2) < g(d(m)) < ma2 - A, 
=> g(d(m)) = [ma2 - Aa] + 7 = S(m, 1)+1. 

For Mm) e (-Aa~2, Aa'1), 
gfdfm)) = ad(m) - hfdfm)), 

= ag(m) -a + arl(h(m) + 7)- 7, (Lemmas 11 and 12), 
= ma2 - Mm) - 2, 

=> ma2 - Aa-1 - 2 < g(d(m)) < ma2 + Aa'2 - 2 = ma2 - Aa- 7, 
- g(dfm)) = [ma2 - Aa] - 7 = S(m, 1)-1. 

For him) e (Aa'^A) 
gld(m)) = adfm) - hfdfm)), 

= ma2 - ah(m) + a'1 Mm), (Lemmas 11 and 12), 
= ma2 - h(m), 

=> ma2 - Aa < ma2 -A< g(dfm)) < ma2 - Aa'1 < ma2 - Aa+ 7, 
=> gld(m)) = [ma2 - Aa] + 1 = Sim, 1)+1. 

We can now combine the results of Lemmas 11,12 and 13 to give the result: 

Theorem 4. For Mm) e f-A,-Aa~2), 
dim) = glm) - 7, Sim, 7) = gfdfm)) - 7; 

iorhfml^f-Aa^/Aa'1), 
dfm) = gfm) - 7, Sim,7) = gfdfm)) + 7; 

and for///W e (Aa'1,A), 
dfm) = gfm) Sfm, 7) = gfdfm)) - 7, 

We now turn to the problem of finding the values of i,j, so that dfm) = SfiJ), for a given m e N. 

Lemma 14. If dfm) = Sfr, 7), then r = [ma'1 + A] . 
Proof. By Lemma 12, 

k(dlmj) = 7 => Mm) e f-A, Aa'3), 
=> dfm) = gfm) - 7, (Theorem 4), 
= [ma+A] t- 7, 
= ma- A- €, 0 < e < 7. 
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MsoS(rJ) = [ra2 -1/2a], so dim) = S(r,1), 

=> ra2 - 1/2a- 1 < ma- 1/2 - e < ra2 - 1/2a, 
=> r < ma'1 + y2a~1 + %a~2 - ea~2 < r + a~2 , 
==> r < r + ea~2 < ma'1 + 1/2 < rt(1 + e)a~2 < r +2a~2 < r+1, 
=> r = [ma-1 + 1/2] . 

Lemma 15. If d(m) = S(r,2), then r = [ma~2 + 1/2]. 

Proof. d(m) = S(r,2) - k(d(m)) = 2, 
=> him) e (1/2ar3, 1/2), (Lemma 12). 

Let r = [ma~2 + 1/2] = ma~2 + 1/2 - e, 0 < e < 1. Now 

e = ma~2 + % (mod 1), 
= -ma+% (mod 1), 
= y2-h(m) (mod 1). 

But 1/2a'3 < him) < 1/2, so e= 1/2 - him), and r = ma'2 +h(m)f 

S(r,l) = [ra2 -1/2a] f 
= [m + h(m)a2 - 1/2a] . 

Forh(m) G (%a3, UaT1), -1/2 <h(m)a2 -1/2a<0, 
- S(r,1) = m-1 
=> Sir,2) = g(S(r,1)), 

= glm - 1), 
= [ma- a+1/2], 
= [glm) + him) - a+1/2] . 

Nowg(m) - 1 <g(m) +h(m) - a+% < glm) - 1/2a, 
- S(r,2) = glm) - 7, 

= d(m) by Theorem 4. 

for him) G (KaT^H 
Sir,2) = g(S(r,1)l 

= glm), 
= dim) by Theorem 4. 

Lemma 16. S(m,l) = df[ma+1/2a~2]l V m e N. 

Proof. Let n = [ma+1/2a~2] = ma+1/2a~2 -e, 0 < e < 1, 

=> ma+1/2a~2 - 1 < n < ma+1/2a~2, 
=> m = m + 1/2ar3 -a-1 + 1/2 < na-1 +% < m + 1Aa~3 + 1/2 = m + a' 
=> m = [na'1 + %] . 

Also 

Hence 

Further, 

For 

e = ma+1/2a 2 (mod 1), 
= hlm) + 1/2a~2 (mod 1). 

e = him) + 1/2a~2 + 1 for him) G {-%, -1/2a~2), 
e = him) + 1/2a~2 for him) G l-1/2a~2

f
 1/2). 

h(n) = na (mod 1), 
= ma2 + tea'1 - ea (mod 1), 
= him) + tta'1 - ea (mod 1), 

him) G (-y2/ -y2a-2K e = h(m) + 1/2a'2 + 1, 
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=> h(n) = -a~1h(m) - a (mod 1), 
=> h(n) = -ar1h(m)-a+ 1, 

= -a-1 (Mm)- 1), 
=> h(n) G (-%,-%a-i)m 

For Mm) G (-1/2a-2, %), e = Mm) + %a'2, 

=> Mn) = -a'1 h(m) (mod 1), 
=> Mn) = -a him), 
- Mn) G (-Kar1, 1/2a~3). 

Hence in either case Mn) G (-%, 1/2a~3), so applying Lemma 14, 

tf/n,/; = SdnaT1 +%], V = d(n) = d([ma +AaT2]). 

Lemma 1 7. S(m,2) = d([ma2 - 1/2a71]), Vm•' e N. 

Proof. Let n = [ma2 - 1/2a
1] = ma2 - Aa'1 - e, 0 < e < 1, 

=> /7?a2 - ^ a _ i - 1 < n < ma2 - Aa'1, 
=> m < na2 + V2a~3 + a~2 = na~2 + 1/2 < m + a~2 , 
=> m = [nor2 + 1/2]. 

Also 

Hence 

Further 

e = ma2 - 1/2a
 1 (mod 1), 

= Mm)-ha-1 (mod 1). 

e = Mm) - ha'1 + 1 for Mm) G t-%, V.a'1), 

e = Mm) - ha1 for Mm) G (KaT1, %). 

h(n) = /7a (mod 1), 
= 777^ - % - ea (mod 1), 
= 2ma- 1/2 - ea (modi) , 
= 2h(m)-1/2-ea (mod 1). 

For Mm) G f - & , ^a'^Jt e = / / f e ; - 'ACT1 + 7, 

=> /7//7J = a~2h(m)- a (mod 1), 
=> Mn) = a'2Mm)-a + 2, 

= a-2(1 + h(m)), 
=> Mn) G IKar2,^). 

For Mm) (E ('AaT^H e = h(m) - M'1, 
- /7(W = Mm)(2-a) (mod 1), 

= a~2h(m) (mod 1), 
- /7/W = a'2 Mm), 
- /JW G ^a-^, ^a-^. 

Hence in either case h(n)^(1/2a~3, 1/2), so applying Lemma 15, S(m,2) = S([na~2 + 1/2], 2) = d(n) = d<[ma2- Aa*1 ]) 
These four Lemmas together with Lemma 12, give us Theorem 5. 

Theorem 5. tf/W = Sdmar1 + 1/2], 1) if -% < Mm) < 1/2a~3, 
= S([ma-2 + y2],2) if -%ar3 < Mm) < 1/2, 

S(m,1) = d([ma+1/2a~2])f 

S(m,2) = d([ma2 -Kar1)), V m G N. 
We can note now from Lemma 10 that as d(m) <ma- Aa'1<m(a+ 1) - Aa'1 - 1 <d(m + 1), the sequence 
d(m) is strictly monotonic increasing and hence by Theorem 5 we establish Butcher's conjecture. 

Theorem 6. 
[S(m,1):m G N) U \s(m,2): m G N) = [d(m):m G N) . 


