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ABSTRACT 

A sequence of rectangles Rn is generated by adding squares cyclically to the East, N, W, S side of the pre-
vious rectangle. The centers of Rn fall on a certain hyperbola, in a manner reminiscent of multiplication in a 
real quadratic number field. 

INTRODUCTION 

We take a special case for simplicity. Suppose R} is the square - 7 < x < 1,-1 <y < 1. R2 is the rectangle 
-1 < x < 3,-1 <y < 1. R3 is the,rectangle-/ < x <3, -1 <y <5. Let Fn denote then th Fibonacci num-
ber. Then Rn has sides 2Fn and 2Fn_± for all n. 

We ask for information about the center (xn, yn) of Rn. This search leads us to the r ing i?® Rin which 
R(?) jRis given pointwise addition and multiplication. We close with an examination of "rotations" and linear 
fractional mappings o f / ? ® R. Certain classes of hyperbolas remain invariant under such mappings. 

1. DEFINITIONS AND STATEMENT OF RESULTS 

Let a-,b > 0. Suppose a sequence of rectangles is generated in the following manner. The initial rectangle has 
center (0,0) and positive dimensions^, Y^. If the n rectangle Rn has dimensions^, Yn then Rn+i is 
the union of Rn with an incremental rectangle on the East, N. W,S side of Rn according asn = 1, 2, 3, 0 mod 
4. The dimensions of the incremental rectangle areaYn + b, Yn if n = 1 mod 2, and Xn, aXn + b\\n = 0mod 
2. 

Theorem. Let (xn, yn)be the center of Rn. Let/7 = 1MaYl+b), E=1MaXl+b). 
Then for all n > 1, (xn, yn) lies on the right hyperbola 

H = {(x,y): x2 + axy - y2 - Dx + Ey = o]. 

Further, if h is the center of H, then the area enclosed by H and the rays 

h,(xn,yn) and h, (xn+4, yn+4) 
is independent of n. 

REMARK. The proof that the (xn, yn) lie on H is a rather ordinary induction. To prove that the areas en-
closed by H and rays from adjacent rectangle centers to h are all equal, we introduce the ring R ® R. 

Definition. R ® R is the ring R ® R with addition (x,y) + (x't y') = (x+x'f y +y') and multiplica-
tion (x,y) • (x', y') = (x-x\ y-yl-

Definition. If (x,y) e R x R, N(x,y) = xy; and Arg (x,y) = log \(y/x)\ if xy j= 0. 

Definition. \\N(x,y)tQ, 
(*', V'> = ( xl YL\ 
(x,y) \ x ' y I 

REMARK. N(x,y)= 1 is the hyperbola*/= /. Arg 60W is the area enclosed by N(x,y)= 1 and the rays 

(0,0),(\x\,\y\) a n d (0,0),(\y\,\x\)-

It is for this area property, so similar to the one stated in Theorem 1, that we introduce R ® R. 

Theorem 2. Let k be real,a, b, c,d,zo e R ® R. Assume not both a,b = (0,0) and not both c±, d± 
= 0and not both C2, d2 = 0. Letk £0. (Here (c\, 02) = c and (d^,d2) = d.) 
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f(z) = ^ 
cz + d 

for all z such \\\z\N(cz + d) £Q. Then the image under f of {z: N(Z-ZQ = k) is of the form 

{w: N(W-WQ) = k'\ 
where no more than 4 points are missing. 

REMARK. Thus except for technicalities, a linear fractional maps hyperbolas of the form N(z - zo) = k to 
hyperbolas of the same form. The analogy with the complex numbers, where linear fractional map circles to 
circles, suggests many more similar results which space does not permit us to list. 

2. PROOFS. THEOREM 1,PART 1 

The reader may verify by direct calculation that the first couple of (xn, yn) lie on // . We now claim that 

2xn + ayn + 1MaYn +b) = D if n = 1 mod 4. 

-axn + 2yn + 1/2(aXn +b) = E if n = 2 mod 4. 

2xn +ayn - 1/2(aYn+b) = D if n = 3 mod 4, 
and 

-axn +2yn - 1MaXn +b) = E if n = 0 mod 4. 

Observe that if (xn, yn) e H and the claim is true for/7, then (xn+1, yn+ji)G.H. Thus we need only prove 
the claim to show that all (xn, yn) aire on H. 

Proof of claim, n = 1 mod 2. 
If the claim is true for some n == 1 mod 4, then 

2*n + Wn + 1MaYn+b) = D. 
We show that the claim follows for n +2. 

For, 

*n+2 = xn + 1MaYn +b), yn+2 = yn + %(b +aXn +a2Yn +ab), 
and 

Yn+2 = Yn +b +aXn +a2Yn+ab. 
Thus 

2xn+2 + ayn+2 - 1MaYn+2 + b) = 2(xn + 1MaYn + b» + a(yn + 1Mb +aXn+a2Yn+ ab)) 
- 1Mb + a(Yn+ b + aXn+ a2Yn+ ab» = 

(by claim) = D + (aYn+h) + (1/2ab + 1/2a2Xn + 1/2a3Yn + 1/2a2b) - %b 
-1/2aYn- %ab - 1/2a2Xn - 1/2a3Yn - 1/2a2b 

-y2(aYn+b) = D. 
Similarly, if the claim is true for some n = 2 mod 4 it is true for/7 + 2, if true for some n = 3 mod 4 it is true 

for n + 2, and if true for n ss 0 mod 4 it is true for/7 + 2. Thus it is only necessary to check that the claim is 
true for n = 1 and n = 2. If n = 1, xn and yn = 0 and 1/2(aYl + b) = D by definition. x2 - 1/2(aYl +b), 
and y2 = 0. X2 = X± + aYt + b, and! Y2 = Y1. Thus 

-ax2+2y2 + 1/2(aX2+b) = -1/2a(aYt +b) + y2(aXt +a2Yt +a2Yt +ab+b) = 1/2(aXt +b) = E 

by definition. This proves the claim, and hence the centers of Rn lie on H. 
For the second part of Theorem 1, we note that H is a hyperbola whose asymptotes are perpendicular. It is 

therefore similar, in the geometric sense, to the hyperbola xy = 1. Let 

y.R® R - R® R 
be a similarity mapping which takes// onto xy s1. 

For each n, the line (xn_i, yn-i), (xn, yn) is perpendicular to (xn, yn), (xn+i, yn+i). This property is 
preserved under the similarity mapping of H onto xy = 1. 
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Let zn = (x'n, y'n) = ip(xn, yn). Let c be the slope of the line from (x\, y\) to (x'2, y^)- Let C = (c, 1/c). 
(cfQ). Then (with the help of a little algebra) 

zn = -C'^z}1 if n = 2 mod 4, 

-C^zt if n = 3 mod 4 

+C~n+1z~1
1 if /? = mod 4 

and 
zn = +Cn~1z1 if /? = 1 mod 4. 

Now the region enclosed by the lines from (0,0) toz n and to zn+4, and byxy = 1, has area 

\V2(!\K§(zn+4)-l\x%(zn))\ = \y2A^(zn+4/zn)\ = | 1 / 2 A r g ^ 4 J | or |̂ 4 Arg 

depending on whether n is odd or even. Either way, since Arg (C) = Arg (C1), all such regions have equal 
areas. 

Thus the corresponding regions bounded by lines from the center of H to the (xn, yn) also have areas equal 
to each other's, since <p multiplies areas by a constant. 

The mapping r : z -* C z of K ® R onto R ® R may be viewed as a "rotation" of R ® R, since it 
changes Arg (z) but not N(z). Clearly r sends hyperbolas of the form N(z) = k into themselves. This is remi-
niscent of linear fractional transformations of the complex plane. Although there is no direct further bearing 
on Fibonacci tiling, we are inclined to note some similarities. 

Proof of Theorem 2. Fix a,b,c,d e R ® R. Let (c\ ,C2) = c and (d\, 62) = d. Suppose not both a 
and b = (0,0), and fclfdi)t (0,0) (c2,d2)t (0,0). F\xx0,y0, kfti e R. 

Lemma 1. Under the above conditions, there ex is t^ ,y^ ,X2>/2> KeR such that 
K t O, Xi £ x0, xi £ -di/a, yi t yo, y i t -d2/c2, x2 t xlt 

x2 t -di/ci, y2 t yi,Y2 t -d2/c2, 

and such that (x - x0)(y - y0) = k if and only \Ux -x^)(y - yx)/(x - x2)(y - y2) = K ox (x,y) = (xi,y2) 

or (x'2, y'il 

Proof. Select some k £ 0,1 such that 

(K- lHk-xgy0) + K-2(K- 1)2x0y0 t 0. 
Fix /C. Let 

x2 = K~U(K- Vxo+Xi), y2 = K'HiK- Dy0+Yi). 
Then the equation 

k-xoyo = (K- irUxm-K-ZffK- 1)x0+Xi)((K- 1)y0+yi) 

has a range of solutions x^, y\ in which y\ is a non-constant continuous function of x^. 
When the above conditions are satisfied, andx^ #xo,yi £yo> 

(x~-x0)(y-y0) = k o (x-x^fy-y^ = K(x - x2)(y-y2>• 
Thus Lemma 1. 

We may restate this as saying that except for a special class of degenerate hyperbolas, every hyperbola 
N(z - ZQ) = k can be put in the form 

N(z-Zl) 

N(z-z2) 

Now let X e J R ® R, 

x _ fciX2+dt c2y2
+d2 \ 

\cixi +dt ' c2yi +d2 / 
Let \N\ = f(zi), W2 = Hz'2). Then 

w-wi . z - zi £i , 
= X o w = f(z) or w = W2, z = Z2 . 

W-W2 z - z2 
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Thus 
Nlz-Zj) 
N(z-z2) 

has image 
N(w -Wi) 

= K 

N(w - W2) 
= KN(\). 

By our previous results this is also a hyperbola of the same sort. 
REMARK. Thus except for isolated points for which necessary divisions are impossible in R®RyR® R 

behaves just like E with respect to linear fractional mappings. 
One could show without great difficulty that the maps f of Theorem 2, are "conformal," in the R Q R 

sense. Self mappings of the "unit circle" N(z) < 1 have properties analogous to their counterparts over 0. But 
the prospects along this line are quite limited. R®R is only a curiosity, and cannot (in my opinion) support 
a deep and rich theory. 

For those familiaj^with the number theory of Q(sf5), we remark that for the example of the introduction, 
by embedding Q(>J5) in i ? ® R one may show that the (xn, yn) consist of all the integer points on 

x2 +xy-y2 -x+y = 0, 
except for (0,1). 
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