FIBONACCI TILING AND HYPERBOLAS

DOUGLAS HENSLEY
The Institute for Advanced Study, Princeton, New Jersey 08540

Abstract

A sequence of rectangles R_{n} is generated by adding squares cyclically to the East, $\mathrm{N}, \mathrm{W}, \mathrm{S}$ side of the previous rectangle. The centers of R_{n} fall on a certain hyperbola, in a manner reminiscent of multiplication in a real quadratic number field.

INTRODUCTION

We take a special case for simplicity. Suppose R_{1} is the square $-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1 . R_{2}$ is the rectangle $-1 \leqslant x \leqslant 3,-1 \leqslant y \leqslant 1 . R_{3}$ is the rectangle $-1 \leqslant x \leqslant 3,-1 \leqslant y \leqslant 5$. Let F_{n} denote the nth Fibonacci number. Then R_{n} has sides $2 F_{n}$ and $2 F_{n-1}$ for all n.
We ask for information about the center (x_{n}, y_{n}) of R_{n}. This search leads us to the ring $R \otimes R$ in which $R \otimes R$ is given pointwise addition and multiplication. We close with an examination of "rotations" and linear fractional mappings of $R \otimes R$. Certain classes of hyperbolas remain invariant under such mappings.

1. DEFINITIONS AND STATEMENT OF RESULTS

Let $a_{;} b>0$. Suppose a sequence of rectangles is generated in the following manner. The initial rectangle has center (0,0) and positive dimensions X_{1}, Y_{1}. If the $n^{\text {th }}$ rectangle R_{n} has dimensions X_{n}, Y_{n} then R_{n+1} is the union of R_{n} with an incremental rectangle on the East, N. W, S side of R_{n} according as $n \equiv 1,2,3,0 \bmod$ 4. The dimensions of the incremental rectangle are a $Y_{n}+b, Y_{n}$ if $n \equiv 1 \bmod 2$, and X_{n}, $a X_{n}+b$ if $n \equiv 0 \bmod$ 2.

Theorem. Let $\left(x_{n}, y_{n}\right)$ be the center of R_{n}. Let $D=1 / 2\left(a Y_{1}+b\right), E=1 / 2\left(a X_{1}+b\right)$.
Then for all $n \geqslant 1,\left(x_{n}, y_{n}\right)$ lies on the right hyperbola

$$
H=\left\{(x, y): x^{2}+a x y-y^{2}-D x+E y=0\right\} .
$$

Further, if h is the center of H, then the area enclosed by H and the rays

$$
\overline{h,\left(x_{n}, y_{n}\right)} \text { and } \overline{h,\left(x_{n+4}, y_{n+4}\right)}
$$

is independent of n.
REMARK. The proof that the $\left(x_{n}, y_{n}\right)$ lie on H is a rather ordinary induction. To prove that the areas enclosed by H and rays from adjacent rectangle centers to h are all equal, we introduce the ring $R \otimes R$.

Definition. $R \otimes R$ is the ring $R \otimes R$ with addition $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and multiplication $(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x \cdot x^{\prime}, y \cdot y^{\prime}\right)$.
Definition. If $(x, y) \in R \times R, N(x, y)=x y$; and $\operatorname{Arg}(x, y)=\log |(y / x)|$ if $x y \neq 0$.
Definition. If $N(x, y) \neq 0$,

$$
\frac{\left(x^{\prime}, y^{\prime}\right)}{(x, y)}=\left(\frac{x^{\prime}}{x}, \frac{y^{\prime}}{y}\right) .
$$

REMARK. $N(x, y)=1$ is the hyperbola $x y=1$. $\operatorname{Arg}(x, y)$ is the area enclosed by $N(x, y)=1$ and the rays

$$
\overline{(0,0),(|x|,|y|)} \text { and } \overline{(0,0),(|y|,|x|)}
$$

It is for this area property, so similar to the one stated in Theorem 1 , that we introduce $R \otimes R$.
Theorem 2. Let k be real, $a, b, c, d, z_{0} \in R \otimes R$. Assume not both $a, b=(0,0)$ and not both c_{1}, d_{1} $=0$ and not both $c_{2}, d_{2}=0$. Let $k \neq 0$. (Here $\left(c_{1}, c_{2}\right)=c$ and $\left(d_{1}, d_{2}\right)=d$.)

Let

$$
f(z)=\frac{a z+b}{c z+d}
$$

for all z such that $N(c z+d) \neq 0$. Then the image under f of $\left\{z: N\left(z-z_{0}=k\right\}\right.$ is of the form

$$
\left\{w: N\left(w-w_{0}\right)=k^{\prime}\right\}
$$

where no more than 4 points are missing.
REMARK. Thus except for technicalities, a linear fractional maps hyperbolas of the form $N\left(z-z_{0}\right)=k$ to hyperbolas of the same form. The analogy with the complex numbers, where linear fractionals map circles to circles, suggests many more similar results which space does not permit us to list.

2. PROOFS. THEOREM 1, PART 1

The reader may verify by direct calculation that the first couple of $\left(x_{n}, y_{n}\right)$ lie on H. We now claim that

$$
\begin{array}{ccc}
2 x_{n}+a y_{n}+1 / 2\left(a Y_{n}+b\right)=D & \text { if } & n \equiv 1 \bmod 4 \\
-a x_{n}+2 y_{n}+1 / 2\left(a X_{n}+b\right)=E & \text { if } & n \equiv 2 \bmod 4 . \\
2 x_{n}+a y_{n}-1 / 2\left(a Y_{n}+b\right)=D & \text { if } & n \equiv 3 \bmod 4
\end{array}
$$

and

$$
-a x_{n}+2 y_{n}-1 / 2\left(a x_{n}+b\right)=E \quad \text { if } \quad n \equiv 0 \bmod 4
$$

Observe that if $\left(x_{n}, y_{n}\right) \in H$ and the claim is true for n, then $\left(x_{n+1}, y_{n+1}\right) \in H$. Thus we need only prove the claim to show that all $\left(x_{n}, y_{n}\right)$ are on H.
Proof of claim, $n \equiv 1 \bmod 2$.
If the claim is true for some $n \equiv 1 \bmod 4$, then

$$
2 x_{n}+a y_{n}+1 / 2\left(a Y_{n}+b\right)=D .
$$

We show that the claim follows for $n+2$.
For,

$$
x_{n+2}=x_{n}+1 / 2\left(a Y_{n}+b\right), \quad y_{n+2}=y_{n}+1 / 2\left(b+a X_{n}+a^{2} Y_{n}+a b\right),
$$

and

$$
Y_{n+2}=Y_{n}+b+a X_{n}+a^{2} Y_{n}+a b
$$

Thus

$$
\begin{aligned}
& 2 x_{n+2}+a y_{n+2}-1 / 2\left(a Y_{n+2}+b\right)= 2\left(x_{n}+1 / 2\left(a Y_{n}+b\right)\right)+a\left(y_{n}+1 / 2\left(b+a X_{n}+a^{2} Y_{n}+a b\right)\right) \\
&-1 / 2\left(b+a\left(Y_{n}+b+a X_{n}+a^{2} Y_{n}+a b\right)\right)= \\
&= D+\left(a Y_{n}+b\right)+\left(1 / 2 a b+1 / 2 a^{2} X_{n}+1 / 2 a^{3} Y_{n}+1 / 2 a^{2} b\right)-1 / 2 b \\
&-1 / 2 a Y_{n}-1 / 2 a b-1 / 2 a^{2} X_{n}-1 / 2 a^{3} Y_{n}-1 / 2 a^{2} b \\
&-1 / 2\left(a Y_{n}+b\right)=D .
\end{aligned}
$$

(by claim)

Similarly, if the claim is true for some $n \equiv 2 \bmod 4$ it is true for $n+2$, if true for some $n \equiv 3 \bmod 4$ it is true for $n+2$, and if true for $n \pm 0 \bmod 4$ it is true for $n+2$. Thus it is only necessary to check that the claim is true for $n=1$ and $n=2$. If $n=1, x_{n}$ and $y_{n}=0$ and $1 / 2\left(a Y_{1}+b\right)=D$ by definition. $x_{2}=1 / 2\left(a Y_{1}+b\right)$, and $y_{2}=0 . X_{2}=X_{1}+a Y_{1}+b$, and $Y_{2}=Y_{1}$. Thus

$$
-a x_{2}+2 y_{2}+1 / 2\left(a X_{2}+b\right)=-1 / 2 a\left(a Y_{1}+b\right)+1 / 2\left(a X_{1}+a^{2} Y_{1}+a^{2} Y_{1}+a b+b\right)=1 / 2\left(a X_{1}+b\right)=E
$$

by definition. This proves the claim, and hence the centers of R_{n} lie on H.
For the second part of Theorem 1 , we note that H is a hyperbola whose asymptotes are perpendicular. It is therefore similar, in the geometric sense, to the hyperbola $x y=1$. Let

$$
\varphi: R \otimes R \rightarrow R \otimes R
$$

be a similarity mapping which takes H onto $x y=1$.
For each n, the line $\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$ is perpendicular to $\left(x_{n}, y_{n}\right),\left(x_{n+1}, y_{n+1}\right)$. This property is preserved under the similarity mapping of H onto $x y=1$.

Let $z_{n}=\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\varphi\left(x_{n}, y_{n}\right)$. Let c be the slope of the line from $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$ to $\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$. Let $C=(c, 1 / c)$. ($c \neq 0$). Then (with the help of a little algebra)

$$
\begin{aligned}
z_{n}= & -C^{-n+1} z_{1}^{-1} & \text { if } & n \equiv 2 \bmod 4 \\
& -C^{n-1} z_{1} & \text { if } & n \equiv 3 \bmod 4 \\
& +C^{-n+1} z_{1}^{-1} & \text { if } & n \equiv \bmod 4
\end{aligned}
$$

and

$$
z_{n}=+C^{n-1} z_{1} \quad \text { if } \quad n \equiv 1 \bmod 4
$$

Now the region enclosed by the lines from $(0,0)$ to z_{n} and to z_{n+4}, and by $x y=1$, has area

$$
\left|1 / 2 / \operatorname{Arg}\left(z_{n+4}\right)-\operatorname{Arg}\left(z_{n}\right) 川=\left|1 / 2 \operatorname{Arg}\left(z_{n+4} / z_{n}\right)\right|=\left|1 / 2 \operatorname{Arg}\left(C^{4}\right)\right| \text { or }\right| 1 / 2 \operatorname{Arg}\left(C^{-4}\right) \mid
$$

depending on whether n is odd or even. Either way, since $\operatorname{Arg}(C)=\operatorname{Arg}\left(C^{-1}\right)$, all such regions have equal areas.
Thus the corresponding regions bounded by lines from the center of H to the $\left(x_{n}, y_{n}\right)$ also have areas equal to each other's, since φ multiplies areas by a constant.
The mapping $r: z \rightarrow C^{4} z$ of $R \otimes R$ onto $R \otimes R$ may be viewed as a "rotation" of $R \otimes R$, since it changes $\operatorname{Arg}(z)$ but not $N(z)$. Clearly r sends hyperbolas of the form $N(z)=k$ into themselves. This is reminiscent of linear fractional transformations of the complex plane. Although there is no direct further bearing on Fibonacci tiling, we are inclined to note some similarities.
Proof of Theorem 2. Fix $a, b, c, d \in R \otimes R$. Let $\left(c_{1}, c_{2}\right)=c$ and $\left(d_{1}, d_{2}\right)=d$. Suppose not both a and $b=(0,0)$, and $\left(c_{1}, d_{1}\right) \neq(0,0)\left(c_{2}, d_{2}\right) \neq(0,0)$. Fix $x_{o}, y_{o}, k \neq 0 \in R$.
Lemma 1. Under the above conditions, there exist $x_{1}, y_{1}, x_{2}, y_{2}, K \in R$ such that

$$
\begin{gathered}
K \neq 0, \quad x_{1} \neq x_{0}, \quad x_{1} \neq-d_{1} / c_{1}, \quad y_{1} \neq y_{0}, \quad y_{1} \neq-d_{2} / c_{2}, \quad x_{2} \neq x_{1}, \\
x_{2} \neq-d_{1} / c_{1}, \quad y_{2} \neq y_{1}, y_{2} \neq-d_{2} / c_{2}
\end{gathered}
$$

and such that $\left(x-x_{0}\right)\left(y-y_{0}\right)=k$ if and only if $\left(x-x_{1}\right)\left(y-y_{1}\right) /\left(x-x_{2}\right)\left(y-y_{2}\right)=K$ or $(x, y)=\left(x_{1}, y_{2}\right)$ or (x_{2}, y_{1}).
Proof. Select some $k \neq 0,1$ such that

$$
(K-1)\left(k-x_{\theta} y_{0}\right)+K^{-2}(K-1)^{2} x_{0} y_{0} \neq 0
$$

Fix K. Let

$$
x_{2}=K^{-1}\left((K-1) x_{0}+x_{1}\right), \quad y_{2}=K^{-1}\left((K-1) y_{0}+y_{1}\right) .
$$

Then the equation

$$
k-x_{0} y_{0}=(K-1)^{-1}\left(x_{1} y_{1}-K^{-2}\left((K-1) x_{0}+x_{1}\right)\left((K-1) y_{0}+y_{1}\right)\right.
$$

has a range of solutions x_{1}, y_{1} in which y_{1} is a non-constant continuous function of x_{1}.
When the above conditions are satisfied, and $x_{1} \neq x_{0}, y_{1} \neq y_{0}$,

$$
\left(x-x_{0}\right)\left(y-y_{0}\right)=k \Leftrightarrow\left(x-x_{1}\right)\left(y-y_{1}\right)=K\left(x-x_{2}\right)\left(y-y_{2}\right) .
$$

Thus Lemma 1.
We may restate this as saying that except for a special class of degenerate hyperbolas, every hyperbola $N\left(z-z_{0}\right)=k$ can be put in the form

$$
\frac{N\left(z-z_{1}\right)}{N\left(z-z_{2}\right)}=K
$$

Now let $\lambda \in R \otimes R$,

$$
\lambda=\left(\frac{c_{1} x_{2}+d_{1}}{c_{1} x_{1}+d_{1}}, \frac{c_{2} y_{2}+d_{2}}{c_{2} y_{1}+d_{2}}\right)
$$

Let $w_{1}=f\left(z_{1}\right), w_{2}=f\left(z_{2}\right)$. Then

$$
\frac{w-w_{1}}{w-w_{2}}=\lambda \frac{z-z_{1}}{z-z_{2}} \Leftrightarrow w=f(z) \text { or } w=w_{2}, \quad z=z_{2}
$$

Thus

$$
\frac{N\left(z-z_{1}\right)}{N\left(z-z_{2}\right)}=K
$$

has image

$$
\frac{N\left(w-w_{1}\right)}{N\left(w-w_{2}\right)}=K N(\lambda) .
$$

By our previous results this is also a hyperbola of the same sort.
REMARK. Thus except for isolated points for which necessary divisions are impossible in $R \otimes R, R \otimes R$ behaves just like \mathbb{C} with respect to linear fractional mappings.
One could show without great difficulty that the maps f of Theorem 2, are "conformal," in the $R \otimes R$ sense. Self mappings of the "unit circle" $N(z) \leqslant 1$ have properties analogous to their counterparts over \mathbb{C}. But the prospects along this line are quite limited. $R \otimes R$ is only a curiosity, and cannot (in my opinion) support a deep and rich theory.
For those familiar with the number theory of $Q(\sqrt{5})$, we remark that for the example of the introduction, by embedding $Q(\sqrt{5})$ in $R \otimes R$ one may show that the (x_{n}, y_{n}) consist of all the integer points on

$$
x^{2}+x y-y^{2}-x+y=0,
$$

except for $(0,1)$.

REFERENCES

1. James Hafner, "Generalized Fibonacci Tiling Made Easy," to appear.
2. Herbert Holden, "Fibonacci Tiles,".: The Fibonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), p. 45.
