IDENTITIES RELATING THE NUMBER OF PARTITIONS INTO AN EVEN AND ODD NUMBER OF PARTS, II

DEAN R. HICKERSON

University of California, Davis, Califo mia 95616

Definition. If $i \geqslant 0$ and $n \geqslant 1$, let $q_{i}^{e}(n)$ be the number of partitions of n into an even number of parts, where each part occurs at most i times. Let $q_{i}^{0}(n)$ be the number of partitions of n into an odd number of parts, where each part occurs at most i times. If $i \geqslant 0$, let $q_{i}^{e}(0)=1$ and $q_{i}^{\circ}(0)=0$.
Definition. If $i \geqslant 0$ and $n \geqslant 0$, let $\Delta_{i}(n)=q_{i}^{e}(n)-q_{i}^{o}(n)$.
The purpose of this paper is to determine $\Delta_{i}(n)$ when i is any odd positive integer. The only cases previously known were $i=1$, proved by Euler (see [1]), $i=3$, proved by this writer (see [2]), and $i=5$ and 7, proved by Alder and Muwafi (see [3]).
Definition. If s, t, u are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, let $f_{s, t, u}(n)$ be the number of partitions of n in which each odd part occurs at most once and is $\equiv \pm s(\bmod 2 t)$ and in which each even part is divisible by $2 t$ and occurs $<u$ times.
Theorem. If s, t, u are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{2 t u-1}(n)=(-1)^{n} \sum_{j} f_{s, t, u}\left(n-t j^{2}-(t-s) j\right)
$$

Proof.

where the last equality follows from Jacobi's identity with $k=t$ and $\ell=t-s$. Since s is odd,

$$
t j^{2}+(t-s) j \equiv j(\bmod 2)
$$

Hence, when we substitute $-x$ for x, we obtain

$$
\begin{aligned}
\sum_{n}(-1)^{n} \Delta_{2 t u-1}(n) x^{n} & =\sum_{j} x^{t j^{2}+(t-s) j} \cdot \prod_{\substack{j \geqslant 1 \\
j \geqslant 1 \\
2 \nmid j \\
j \neq \pm s(\bmod 2 t)}}\left(1+x^{j}\right) \cdot \prod_{\substack{j \\
j \geqslant 1 \\
2 t \mid j}}\left(1+x^{j}+x^{2 j}+\cdots+x^{(u-1) j}\right) \\
& =\sum_{j} x^{t j^{2}+(t-s) j} \cdot \sum_{m} f_{s, t, u}(m) x^{m}
\end{aligned}
$$

from which the theorem follows immediately.
Corollary 1. If s and t are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{2 t-1}(n)=(-1)^{n} \sum_{j} f_{s, t, 1}\left(n-t j^{2}-(t-s) j\right)
$$

Note that $f_{s, t, 1}(n)$ is the number of partitions of n into distinct odd parts $\equiv \equiv \pm s(\bmod 2 t)$.
Proof. Let $u_{=}=1$ in the theorem.
Letting $s=1$ and $t=3$ yields Theorem 1 of [3].
Corollary 2. If $i \geqslant 2$ and n is an integer, then $(-1)^{n} \Delta_{i}(n) \geqslant 0$.
Proof. For even i, this follows from Theorem 3 of [2]; for odd i, it follows by letting $s=1$ and $t=(i+1) / 2$ in Corollary 1.

Corollary 3. If s and t are positive integers with s odd and $1 \leqslant s<t$, and n is an integer, then

$$
\Delta_{4 t-1}(n)=(-1)^{n} \sum_{j} f_{s, t, 2}\left(n-t j^{2}-(t-s) j\right)
$$

Note that $f_{s, t, 2}(n)$ is the number of partitions of n into distinct parts which are either odd but $\not \equiv \pm s(\bmod 2 t)$ or which are divisible by $2 t$.
Proof. Let $u=2$ in the theorem.
Corollary 4. If u is a positive integer and n is an integer, then

$$
\Delta_{4 u-1}(n)=(-1)^{n} \sum_{j} f_{1,2, u}\left(n-2 j^{2}-j\right)
$$

Note that $f_{1,2, u}(n)$ is the number of partitions of n into parts divisible by 4 , where each part occurs $<u$ times.
Proof. Let $s=1, t=2$ in the theorem.
Letting $u=1$ yields Theorem 2 of [2] and $u=2$, Theorem 2 of [3].

REFERENCES

1. Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 3rd ed., pp. 221-222, Wiley, New York, 1972.
2. Dean R. Hickerson, "Identities Relating the Number of Partitions into an Even and Odd Number of Parts," J. Combinatorial Theory, Section A (1973), pp. 351-353.
3. Henry L. Alder and Amin A. Muwafi, "Identities Relating the Number of Partitions into an Even and Odd Number of Parts," The Fibonacci Quarterly, Vol. 13, No. 2 (1975), pp. 337-339.
