AN IDENTITY RELATING COMPOSITIONS AND PARTITIONS

DEAN R. HIC KERSON

University of California, Davis, California

The following partition identity was proved in [1]:
Theorem. If $f(r, n)$ denotes the number of partitions of n of the form $n=b_{0}+b_{1}+\cdots+b_{s}$, where for $0 \leqslant i \leqslant s-1, b_{i} \geqslant r b_{i+1}$, and $g(r, n)$ denotes the number of partitions of n, where each part is of the form $1+r+r^{2}+\ldots+r^{i}$ for some $i \geqslant 0$, then $f(r, n)=g(r, n)$.

In this paper, we will give a generalization of this theorem.
In [1], the parts of the partitions were listed in non-increasing order. It will, however, be more convenient for our purposes to list them in non-decreasing order.
The main result of this paper is given in the following theorem.
The orem 1. Let r_{1}, r_{2}, \cdots be integers. Let $c_{0}=1$ and, for $i \geqslant 1$, let $c_{i}=r_{1} c_{i-1}+r_{2} c_{i-2}+\cdots+r_{i} c_{0}$. Suppose that, for all $i \geqslant 0, c_{i}>0$. For $i \geqslant 0$, let $t_{i}=c_{0}+\cdots+c_{i}$ and define $T=\left\{t_{0}, t_{1}, t_{2}, \cdots\right\}$. Then, for $n \geqslant 0$, the number, $f(n)$, of compositions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+r_{2} b_{i-2}+\cdots+r_{i} b_{0}$ for $1 \leqslant i \leqslant s$, is equal to the number, $g(n)$, of partitions of n with parts in T.
Proof. Let $n=a_{0} t_{0}+\cdots+a_{s} t_{s}$ be a partition of n counted by $g(n)$, where $a_{s}>0$. Define, for $0 \leqslant i \leqslant s$,

$$
b_{i}=\sum_{0 \leqslant j \leqslant i} a_{j+s-i} c_{j} .
$$

Then

$$
b_{0}+\cdots+b_{s}=\sum_{0 \leqslant i \leqslant s} b_{s-i}=\sum_{0 \leqslant i \leqslant s} \sum_{0 \leqslant j \leqslant s-i} a_{i+j} c_{j}=\sum_{0 \leqslant k \leqslant s}\left(a_{k} \sum_{0 \leqslant j \leqslant k} c_{j}\right)=\sum_{0 \leqslant k \leqslant s} a_{k} t_{k}=n .
$$

Also, for $0 \leqslant i \leqslant s$,

$$
b_{i}=\sum_{0 \leqslant j \leqslant i-1} a_{j+s-i} c_{j}+a_{s} c_{i}>\sum_{0 \leqslant j \leqslant i-1} a_{j+s-i} c_{j} \geqslant 0 .
$$

Therefore, $b_{0}+\cdots+b_{s}$ is a composition of n. Moreover, for $1 \leqslant i \leqslant s$,

$$
\begin{aligned}
b_{i} \geqslant \sum_{1 \leqslant j \leqslant i} a_{j+s-i} c_{j} & =\sum_{1 \leqslant j \leqslant i}\left(a_{j+s-i} \sum_{1: \ll k \leqslant j} r_{k} c_{j-k}\right)=\sum_{1 \leqslant k \leqslant i}\left(r_{k} \sum_{k \leqslant j \leqslant i} a_{j+s-i} c_{j-k}\right) \\
& =\sum_{1 \leqslant k \leqslant i}\left(r_{k} \sum_{0 \leqslant j \leqslant i-k} a_{j+s-(i-k)} c_{j}\right)=\sum_{1 \leqslant k \leqslant i} r_{k} b_{i-k} .
\end{aligned}
$$

Thus, $b_{0}+\cdots+b_{s}$ is a composition of n counted by $f(n)$.
This constitutes a mapping ϕ from the set of partitions counted by $g(n)$ into the set of compositions counted by $f(n)$. It suffices to show that ϕ is one-to-one and onto.
If ϕ is not one-to-one, then there exist distinct partitions $a_{o} t_{0}+\cdots+a_{s} t_{s}$ and $a_{o}^{\prime} t_{0}+\cdots+a_{s}^{\prime} t_{s}$, of n which yield the same composition. From the definition of ϕ, it follows that $s=s^{\prime}$. Let i_{o} be the least $i \geqslant 0$ such that $a_{s-i} \neq a_{s-i}^{\prime}$. Then
[FEB.

$$
a_{s-i_{0}}=a_{s-i} c_{0}=b_{i_{o}}-\sum_{1 \leqslant j \leqslant i_{0}} a_{s-\left(i_{0-j}\right) c_{j}}=b_{i_{0}}-\sum_{i \leqslant j \leqslant i_{o}} a_{s-(i 0-j)}^{\prime} c_{j}=a_{s-i}^{\prime} c_{0}=a_{s-i}^{\prime},
$$

a contradiction. Hence ϕ is one-to-one.
We will now show that ϕ is onto. Let $b_{0}+\cdots+b_{s}$ be a composition counted by $f(n)$. Define, for $0 \leqslant i \leqslant s$,

$$
a_{s-i}=b_{i}-\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}
$$

We claim that $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is a partition counted by $g(n)$ whose image under ϕ is the composition $b_{0}+\cdots+$ b_{s}.

Clearly, $a_{s}=b_{0}>0$. Also, for $1 \leqslant i \leqslant s$,

$$
b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}=\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}
$$

so $a_{s-i} \geqslant 0$. Also,

$$
\begin{aligned}
a_{0} t_{0}+\cdots+a_{s} t_{s} & =\sum_{0 \leqslant i \leqslant s} a_{s-i} t_{s-i}=\sum_{0 \leqslant i \leqslant s}\left(b_{i}-\sum_{1 \leqslant j \leqslant i} r_{j} b_{i-j}\right) t_{s-i}=\sum_{0 \leqslant i \leqslant s} b_{i} t_{s-i}-\sum_{0 \leqslant j<i \leqslant s} r_{i-j} b_{j} t_{s-i} \\
& =\sum_{0 \leqslant j \leqslant s} b_{j} t_{s-j}-\sum_{0 \leqslant j \leqslant s}\left(b_{j} \sum_{j<i \leqslant s} r_{i-j} t_{s-i}\right)=\sum_{0 \leqslant j \leqslant s} b_{j}\left(t_{s-j}-\sum_{j<i \leqslant s} r_{i-j} t_{s-i}\right) \\
& =\sum_{0 \leqslant j \leqslant s} b_{s-j}\left(t_{j}-\sum_{s-j<i \leqslant s} r_{i-s+j} t_{s-i}\right)=\sum_{0 \leqslant j \leqslant s} b_{s-j}\left(t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i}\right) .
\end{aligned}
$$

For $0 \leqslant j \leqslant s$, we have

$$
\begin{aligned}
t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i} & =\sum_{0 \leqslant k \leqslant j} c_{k}-\sum_{1 \leqslant i \leqslant j}\left(r_{i} \sum_{i \leqslant k \leqslant j} c_{k-i}\right) \\
& =\sum_{0 \leqslant k \leqslant j}\left(c_{k}-\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i}\right)=c_{0}+\sum_{1 \leqslant k \leqslant j}\left(c_{k}-\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i}\right) .
\end{aligned}
$$

By definition,

$$
c_{0}=1 \quad \text { and } \quad c_{k}=\sum_{1 \leqslant i \leqslant k} r_{i} c_{k-i} \text { for } k \geqslant 1,
$$

so

$$
t_{j}-\sum_{1 \leqslant i \leqslant j} r_{i} t_{j-i}=1 \quad \text { and } \quad a_{0} t_{0}+\cdots+a_{s} t_{s}=\sum_{0 \leqslant j \leqslant s} b_{s-j}=n .
$$

Therefore, $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is a partition counted by $g(n)$. We have

$$
\begin{aligned}
& \sum_{0 \leqslant j \leqslant i} a_{j+s-i} c_{j}=\sum_{0 \leqslant k \leqslant i} a_{s-k} c_{i-k}=\sum_{0 \leqslant k \leqslant i} c_{i-k}\left(b_{k}-\sum_{1 \leqslant j \leqslant k} r_{j} b_{k-j}\right)=\sum_{0 \leqslant m \leqslant i} c_{i-m} b_{m} \\
& -\sum_{\substack{0 \leqslant k \leqslant i \\
0 \leqslant m \leqslant k}} c_{i-k} r_{k-m} b_{m}=b_{i}+\sum_{0 \leqslant m<i} b_{m}\left(c_{i-m}-\sum_{m<k \leqslant i} c_{i-k} r_{k-m}\right)=b_{i}+\sum_{0 \leqslant m<i} b_{m}\left(c_{i-m}-\sum_{1 \leqslant j \leqslant i-m} r_{j} c_{(i-m)-j}\right)=b_{i}
\end{aligned}
$$

Therefore, the image under ϕ of the partition $a_{0} t_{0}+\cdots+a_{s} t_{s}$ is the composition $b_{0}+\cdots+b_{s}$, so the proof is complete.
We will now determine when Theorem 1 is a partition identity. This occurs if and only it, for every $n \geqslant 0$, all compositions counted by $f(n)$ are partitions. Since $c_{0}+c_{1}+\cdots+c_{i}$ is a composition counted by $f\left(t_{i}\right)$, a necessary condition is that $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$. We now show that this condition is also sufficient.
Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied, and, in addition, $c_{0} \leqslant c_{1} \leqslant c_{2} \leqslant \cdots$. Then, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}$, for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with parts in T.

Proof. It suffices to show that all compositions counted by $f(n)$ are partitions. Suppose $b_{0}+\cdots+b_{s}$ is such a composition. Let $1 \leqslant k \leqslant s$. We will show, by induction on i, that, for $1 \leqslant i \leqslant k$,

$$
b_{k}-b_{k-1} \geqslant\left(c_{i}-c_{i-1}\right) b_{k-i}+\sum_{0 \leqslant j<k-i} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<i}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)
$$

Applying this with $i=k$ gives

$$
b_{k}-b_{k-1} \geqslant\left(c_{k}-c_{k-1}\right) b_{0} \geqslant 0,
$$

which will complete the proof.
We have

$$
b_{k}-b_{k-1} \geqslant \sum_{0 \leqslant j<k} b_{j} r_{k-j}-b_{k-1}=\left(c_{1}-c_{0}\right) b_{k-1}+\sum_{0 \leqslant j<k-1} b_{j} r_{k-j},
$$

so the inequality holds for $i=1$. Suppose it holds for $i=m-1$, where $2 \leqslant m \leqslant k$. Then

$$
\begin{aligned}
& b_{k}-b_{k-1} \geqslant\left(c_{m-1}-c_{m-2}\right) b_{k-m+1}+\sum_{0 \leqslant j<k-m+1} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m-1}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) \\
& \geqslant\left(c_{m-1}-c_{m-2}\right)\left(\sum_{0 \leqslant j<k-m+1} b_{j} r_{k-j-m+1}\right)+\sum_{0 \leqslant j<k-m+1} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m-1}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) \\
& =\sum_{0 \leqslant j \leqslant k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)=b_{k-m}\left(r_{m}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{m-\ell}\right) \\
& \quad+\sum_{0 \leqslant j<k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right) .
\end{aligned}
$$

But

$$
r_{m}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{m-\ell}=\sum_{0 \leqslant \ell<m} c_{\ell} r_{m-\ell}-\sum_{1 \leqslant \ell<m} c_{\ell-1} r_{m-\ell}=c_{m}-c_{m-1}
$$

so

$$
b_{k}-b_{k-1} \geqslant\left(c_{m}-c_{m-1}\right) b_{k-m}+\sum_{0 \leqslant j<k-m} b_{j}\left(r_{k-j}+\sum_{1 \leqslant \ell<m}\left(c_{\ell}-c_{\ell-1}\right) r_{k-j-\ell}\right)
$$

and the inequality holds for $i=m$. This completes the induction and the proof.
The following is an important corollary of Theorem 2.
Corollary. Suppose r_{1}, r_{2}, \cdots are non-negative integers with $r_{1} \geqslant 1$. Define T as above. Then, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r_{1} b_{i-1}+\cdots+r_{i} b_{0}$, for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with parts in T.

Proof. For $i \geqslant 1, c_{i}=r_{1} c_{i-1}+r_{2} c_{i-2}+\ldots+r_{i} c_{0} \geqslant c_{i-1}$, and Theorem 2 applies.

We will now illustrate Theorems 1 and 2 and the corollary to Theorem 2 by some examples.
EXAMPLE 1. In the corollary, let $r_{1}=r \geqslant 1$ and $r_{2}=r_{3}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=r^{i}$ and $t_{i}=1+r+\ldots$ $+r^{i}$. Hence, for $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{i} \geqslant r b_{i-1}$ for $1 \leqslant i \leqslant s$ is equal to the number of partitions of n with parts of the form $1+r+\cdots+r^{i}$ for $i \geqslant 0$. This is the result of [1].
EXAMPLE 2. In the corollary, let $r_{1}=r_{2}=1$ and $r_{3}=r_{4}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=F_{i+1}$ and $t_{i}=F_{i+3}$ -1 Thus,

$$
T=\left\{F_{3}-1, F_{4}-1, \cdots\right\}=\{1,2,4,7,12, \cdots\}
$$

For $n \geqslant 0$, the number of partitions of n in which each part is greater than or equal to the sum of the two preceding parts is equal to the number of partitions of n in which each part is 1 less than a Fibonacci number.
EXAMPLE 3. In the Corollary, let $r_{1}=r_{2}=\ldots=1$. Then $c_{0}=1$ and, for $i \geqslant 1, c_{i}=2^{i-1}$. Hence $t_{i}=2^{i}$, for $i \geqslant 0$, and $T=\{1,2,4,8, \cdots\}$. For $n \geqslant 0$, the number of partitions of n in which each part is greater than or equal to the sum of all preceding parts is equal to the number of partitions of n into powers of 2 .
EXAMPLE 4. In Theorem 2, let $r_{1}=-2, r_{2}=-1, r_{3}=r_{4}=\ldots=0$. Then, for $i \geqslant 0, c_{i}=i+1$ and

$$
t_{i}=\frac{(i+1)(i+2)}{2}
$$

so $T=\{1,3,6,10,15, \cdots\}$. For $n \geqslant 0$, the number of partitions $b_{0}+\cdots+b_{s}$ of n in which $b_{1} \geqslant 2 b_{0}$ and, for $2 \leqslant i \leqslant s, b_{i} \geqslant 2 b_{i-1}-b_{i-2}$ is equal to the number of partitions of n into triangular numbers.
EXAMPLE 5. In Theorem 1, let $r_{1}=(-1)^{i+1} F_{i+2}$, for $i \geqslant 1$. Then $c_{0}=1, c_{1}=2, c_{2}=c_{3}=\ldots=1$, so $t_{0}=1$ and $t_{i}=i+2$ for $i \geqslant 1$. Hence, $T=\{1,3,4,5,6, \cdots\}$. For $n \geqslant 0$, the number of compositions $b_{0}+\cdots+b_{s}$ of n in which

$$
b_{i} \geqslant 2 b_{i-1}-3 b_{i-2}+5 b_{i-3}+\cdots+(-1)^{i+1} F_{i+2} b_{0}
$$

for $1 \leqslant i \leqslant s$, is equal to the number of partitions of n with no part equal to 2 .

RE FERENCE

1. Dean R. Hickerson, "A Partition Identity of the Euler Type," Amer. Math. Monthly, 81 (1974), pp. 627629.
