FIBONACCI AND LUCAS NUMBERS AND THE COMPLEXITY OF A GRAPH

A. G. SH ANN ON
The New South Wales Institute of Technology, Broadway, New South Wales, Australia

1. TERMINOLOGY

In this note we shall use the following notation and terminology:

$$
\begin{aligned}
& \text { the Fibonacci numbers } F_{n}: F_{1}=F_{2}=1, \\
& \qquad F_{n+2}=F_{n+1}+F_{n}, \quad n \geqslant 1 ; \\
& \text { the Lucas numbers } \quad L_{n}: L_{1}=1, L_{2}=3, \\
& \qquad L_{n+2}=L_{n+1}+L_{n}, \quad n \geqslant 1 ;
\end{aligned}
$$

α, β : zeros of the associated auxiliary polynomial;
a composition of a positive integer n is a vector ($a_{1}, a_{2}, \cdots, a_{k}$) of which the components are positive integers which sum to n;
a graph G, is an ordered pair (V, E), where V is a set of vertices, and E is a binary relation on V; the ordered pairs in E are called the edges of the graph.
a cycle is a sequence of three or more edges that goes from a vertex back to itself;
a graph is connected if every pair of vertices is joined by a sequence of edges; a tree is a connected graph which contains no cycles;
a spanning tree of a graph is a tree of the graph that contains all the vertices of the graph;
two spanning trees are distinct if there is at least one edge not common to them both;
the complexity, $k(G)$, of a graph is the number of distinct spanning trees of the graph.
For relevant examples see Hilton [2] and Rebman [4], and for details see Harary [1].

2. RESULTS

Hilton and Rebman have used combinatorial arguments to establish a relation between the complexity of a graph and the Fibonacci and Lucas numbers. Rebman showed that

$$
\begin{equation*}
K\left(W_{n}\right)=L_{2 n}-2, \tag{2.1}
\end{equation*}
$$

where W_{n}, the n-wheel, is a graph with $n+1$ vertices obtained from a cycle on n points by joining each of these n points to a further point.
Hilton also established this result and

$$
\begin{equation*}
L_{2 n}-2=\sum_{\gamma(n)}(-1)^{k-1} \frac{n}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}, \tag{2.2}
\end{equation*}
$$

in which $\gamma(n)$ indicates summation over all compositions (a_{1}, \cdots, a_{k}) of n, the number of components being variable. It is proposed here to prove (2.1) by a number theoretic approach.
To do so we need the following preliminary results which will be proved in turn:

$$
\begin{gather*}
F_{2 n}=F_{2 n+2}-2 F_{2 n}+F_{2 n-2}, \tag{2.3}\\
1-2 x^{2}+x^{4}=\exp \left(-2 \sum_{m=1}^{\infty} x^{2 m} / m\right), \tag{2.4}
\end{gather*}
$$

[FEB.
(2.5)

$$
\begin{gather*}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=x^{2} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \\
1+\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\left(1-2 x^{2}+x^{4}\right) \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \tag{2.6}\\
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\exp \left(\sum_{m=1}^{\infty}\left(L_{2 m}-2\right) x^{2 m} / m\right) \tag{2.7}
\end{gather*}
$$

wherein it is assumed that all power series are considered formally.

3. PROOFS

Proofof (2.3).

$$
\begin{aligned}
F_{2 n} & =F_{2 n}+F_{2 n-1}-F_{2 n-1} \\
& =F_{2 n+1}-F_{2 n}+F_{2 n}-F_{2 n-1} \\
& =F_{2 n+1}-F_{2 n}+F_{2 n-2} \\
& =F_{2 n+2}-2 F_{n}+F_{2 n-2} .
\end{aligned}
$$

Proof of (2.4).

$$
\begin{aligned}
1-2 x^{2}+x^{4} & =\left(1-x^{2}\right)^{2} \\
& =\exp \ln \left(1-x^{2}\right)^{2} \\
& =\exp \left(-2 \ln \left(1-x^{2}\right)^{-1}\right) \\
& =\exp \left(-2 \sum_{m=1}^{\infty} x^{2 m} / m\right)
\end{aligned}
$$

Proof of (2.5).

$$
\begin{aligned}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n} & =x^{2} /\left(1-3 x^{2}+x^{4}\right) \\
& =x^{2} /\left(1-a^{2} x^{2}\right)\left(1-\beta^{2} x^{2}\right) \\
\ln \left(\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2}\right) & =-\ln \left(1-a^{2} x^{2}\right)\left(1-\beta^{2} x^{2}\right) \\
& =-\ln \left(1-a^{2} x^{2}\right)-\ln \left(1-\beta^{2} x^{2}\right) \\
& =\sum_{m=1}^{\infty} \frac{a^{2 m} x^{2 m}}{m}+\sum_{m=1}^{\infty} \frac{\beta^{2 m} x^{2 m}}{m} \\
& =\sum_{m=1}^{\infty}\left(a^{2 m}+\beta^{2 m}\right) x^{2 m} / m \\
& =\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m
\end{aligned}
$$

Thus

$$
\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2}=\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \text { and } \sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m / m}\right)
$$

Proof of (2.6).

Now

$$
\begin{aligned}
\sum_{n=0}^{\infty} F_{2 n} x^{2 n-2} & =\sum_{n=1}^{\infty} F_{2 n} x^{2 n-2} \\
& =\sum_{n=0}^{\infty} F_{2 n+2} x^{2 n} \\
& =\exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) \\
\sum_{n=0}^{\infty} F_{2 n-2} x^{2 n} & =-1+\sum_{n=0}^{\infty} F_{2 n} x^{2 n+2} \\
& =-1+x^{2} \sum_{n=0}^{\infty} F_{2 n} x^{2 n} \\
& =-1+x^{4} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right) .
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} F_{2 n} x^{2 n}=\sum_{n=0}^{\infty}\left(F_{2 n+2}-2 F_{2 n}+F_{2 n-2}\right) x^{2 n}
$$

So

$$
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\left(1-2 x^{2}+x^{4}\right) \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right)
$$

Proof of (2.7).

$$
1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}=\left(1-x^{2}\right)^{2} \exp \left(\sum_{m=1}^{\infty} L_{2 m} x^{2 m} / m\right)=\exp \left(\sum_{m=1}^{\infty}\left(L_{2 m}-2\right) x^{2 m} / m\right)
$$

from (2.4).

4. MAIN RESULT

To prove the result (2.2) we let

$$
W_{n}=\sum_{\gamma(n)} \frac{(-1)^{k-1}}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}
$$

Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} W_{n} x^{2 n} & =\sum_{n=1}\left\{\sum_{\gamma(n)} \frac{(-1)^{k-1}}{k} F_{2 a_{1}} \ldots F_{2 a_{k}}\right\} x^{2 n} \\
& =\sum_{k=1}^{\infty}-\left(-\sum_{n=1}^{\infty} F_{2 n} x^{2 n}\right)^{k} / k \\
& =\ln \left(1+\sum_{n=1}^{\infty} F_{2 n} x^{2 n}\right)=\sum_{n=1}^{\infty}\left(L_{2 n}-2\right) x^{2 n} / n
\end{aligned}
$$

from which we get that

$$
W_{n}=\left(L_{2 n}-2\right) / n
$$

or

$$
L_{2 n}-2=\sum_{\gamma(n)} \frac{(-1)^{k-1} n}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}
$$

These properties have been generalized elsewhere for arbitrary order recurrence relations [5] .
Hoggatt and Lind [3] have also developed similar results in an earlier paper.
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the problem.

RE FERENCES

1. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
2. A. J. W. Hilton, "Spanning Trees and Fibonacci and Lucas Numbers," The Fibonacci Quarterly, Vol. 12, No. 3 (October 1974), pp. 259-262.
3. V. E. Hoggatt, Jr., and D. A. Lind, "Fibonacci and Binomial Properties of Weighted Compositions," J. of Combinatorial Theory, Vol. 4, No. 2 (March 1968), pp. 121-124.
4. Kenneth R. Rebman, "The Sequence 151645121320 … in Combinatorics," The Fibonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), pp. 51-55.
5. A. G. Shannon, "Ordered Partitions and Arbitrary Order Linear Recurrence Relations," Mathematics Student, in press.

* * *

EMBEDDING A GROUP IN THE $p^{t h}$ POWERS

HUGOS.SUN
California State University, Fresno, California

In a finite group G, the set of squares, cubes, or $p^{\text {th }}$ powers in general, does not necessarily constitute a subgroup. However, we can always embed a finite group into the set of squares, cubes, or any $p^{t h}$ powers of another group.
A subgroup H of a group G is said to be a subgroup of $\mathrm{p}^{\text {th }}$ powers if for every $y \in H$, there is an $x \in G$ such that $x^{p}=y$.
Theorem. Every finite group G is isomorphic to a subgroup of $p^{\text {th }}$ powers of some permutation group.
Proof. Let G be a finite group, and let P be an isomorphic permutation group on n elements, say a_{11}, a_{12}, \cdots, $a_{1 n}$.

Consider a permutation group Q on $p n$ elements

$$
a_{11}, a_{12}, \cdots, a_{1 n} ; \quad a_{21}, a_{22}, \cdots, a_{2 n} ; \cdots, \quad a_{p 1}, a_{p 2}, \cdots, a_{p n}
$$

defined in the following manner: For any permutation

$$
\sigma=\left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right) \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)
$$

in P corresponds the permutation

$$
\begin{aligned}
\hat{\sigma}= & \left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right)\left(a_{2 i_{1}} a_{2 i_{2}} \cdots a_{2 i_{n}}\right) \cdots\left(a_{p i_{1}} a_{p i_{2}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)\left(a_{2 j_{2}} \cdots a_{2 j_{m}}\right) \cdots\left(a_{p j_{1}} a_{p j_{2}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

in the symmetric group $S_{p n} . Q$ is clearly isomorphic to P and each elemenr in Q is the $p^{\text {th }}$ power of an element in $S_{p n}$. In fact, $\hat{\sigma}=\tau^{p}$, where

$$
\begin{aligned}
\tau= & \left(a_{1 i_{1}} a_{2 i_{1}} \cdots a_{p i_{1}} a_{1 i_{2}} a_{2 i_{2}} \cdots a_{p i_{2}} \cdots a_{1 i_{k}} a_{2 i_{k}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{2 j_{1}} \cdots a_{p j_{1}} a_{1 j_{2}} a_{2 j_{2}} \cdots a_{p j_{2}} \cdots a_{1 j_{m}} a_{2 j_{m}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

