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1. TERMINOLOGY 

In this note we shall use the following notation and terminology: 

the Fibonacci numbers Fn: F1 = F2 = 1, 

Fn+2 = Fn+l + Fn, n > 1 ; 
the Lucas numbers Ln: L^= 1, L2 = 3, 

Ln+2 = Ln+1 +Ln, n > 1 ; 

aft: zeros of the associated auxiliary polynomial; 
a composition of a positive integer n is a vector (a\, a2, —, 3k) of which the components are positive integers 

which sum to n; 
3graph G, is an ordered pair (V,E), where V is a set of vertices, and £ is a binary relation on V; the ordered 

pairs in£ are called the edges of the graph, 
a cycle is a sequence of three or more edges that goes from a vertex back to itself; 
a graph is connected if every pair of vertices is joined by a sequence of edges; 
a tree is a connected graph which contains no cycles; 
a spanning tree of a graph is a tree of the graph that contains all the vertices of the graph; 
two spanning trees are distinct if there is at least one edge not common to them both; 
the complexity, k(G), of a graph is the number of distinct spanning trees of the graph. 
For relevant examples see Hilton [2] and Rebman [4 ] , and for details see Harary [1 ] . 

2. RESULTS 

Hilton and Rebman have used combinatorial arguments to establish a relation between the complexity of a 
graph and the Fibonacci and Lucas numbers. Rebman showed that 

(2.1) K(Wn) = L2n-2, 

where Wn, the /7-wheel, is a graph with n+ 1 vertices obtained from a cycle on n points by joining each of these 
n points to a further point. 

Hilton also established this result and 

(2-2) L2n-2= £ (-7)k-1"-F2al-F2ak, 
y(n) 

in which y(n) indicates summation over all compositions (a\, •••, a^) of n, the number of components being 
variable. It is proposed here to prove (2.1) by a number theoretic approach. 

To do so we need the following preliminary results which will be proved in turn: 

(2.3) F2n = F2n+2~ 2F2n + F2n~2, 

(2.4) l-2x2+x4 ="exp I-2 £ x2m/m\ , 
\ m=l I 
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(2.5) £ F2n*Zn = x2 exp £ L2mx2m/m , 

(2.6) 1+ £ F2nx2n = (1-2x2+x4)eM £ ^mx2 m/ /w , 
n=0 \ m=l I 

(2.7) 1+Y. F2n*2n = exp I ^ fZ . 2 m -Zl* 2 m / J , 

wherein it is assumed that all power series are considered formally. 

3. PROOFS 

Proofof(2.3). 

Proof of (2 A). 

Proof of (2.5). 

Thus 

F2n = F2n + F2n-1 ~ F2n-1 
= F2n+1 ~ F2n + F2n ~ F2n-i 
= F2n+1 ~ F2n + F2n~2 
= F2n+2 - 2Fn + F2n~2 • 

1-2x2+x4 = (1-x2)2 

= exp In (1-x2) 
= exp (-2 In (1-x2)'1) 

= exp 1-2 £ x2m/m 
\ m=l ) 

E F2n*2n= X2/(1-3X2 + X4) 
n=0 

= x2/(1-a2x2)(1-fx2) 

In f E F2nx2n~2\ = -In (l-a2x2)(1 - fx2) 

= -\t\(1-a2x2)-\n(1-(32x2) 

= ^ a2mx2m , ~ ^mx2m 
m=l m=l 

= 2 ra2m+/32"Vm/m 

= £ L2mx2m/m. 
m=l 

£ fa,*2"-* = exp I £ L2mx2m/m j and £ F2nx2" = exp ( £ 
n=0 \m=l I n=0 \ m=l 

L2mx2m/m 
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Proof of (2.6). 
CO OO 

£ F2nx2n~2 = £ F2nx2n'2 

n=0 n=l 

E F2n+2* 
n=0 

2n 

exp E L2mx2m/m 
\m=l I 

CO 

2n+2 £ F2n-2X2n = - / + £ F2n* 

2n 

Now 

So 

Proof of (2.7). 

= ~1+X2 E f2n* 

= -7+x 4 exp( E ^ m x 2 m / m ) . 
\m=l f 

E ^ ^ E ^2n + 2~^2n^2n-2^ 2 n . 

' + £ F2nx2n = (1-2x2+x4)expl £ i 2 mx2 m/m). 

/ °° \ / oo 

/ + E / ^ ^ ^ / - ^ e x p E ^2m^2m//^ =exp ^ (L2m-2)x2 

n=l \m=l J \m=l 
from (2.4). 

4. MAIW RESULT 

To prove the result (2,2) we let 

Wn= E l = ^ F2ai-F2ak. 
y(n) 

Then 

n=l n=l I j(n) 
£ ^2" = £^£ ^P^-^f eU2" 

£ - - £ ^ 2 " A 
k=l \ n=l / 

= ln 7 + E ^ " = E (L2n-2)x2n/n 
\ n=l I n=l 
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from which we get that 
Wn = (L2n-2)/n 

or 

y(n) 

These properties have been generalized elsewhere for arbitrary order recurrence relations [5 ] . 
Hoggatt and Lind [3] have also developed similar results in an earlier paper. 
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the 

problem. 
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EMBEDDING A GROUP IN JHEpth POWERS 

HUGOS.SUN 
California State University, Fresno, California 

In a finite group G, the set of squares, cubes, or/? powers in general, does not necessarily constitute a subgroup. 
However, we can always embed a finite group into the set of squares, cubes, or any pth powers of another group. 

A subgroup H of a group G is said to be a subgroup of p powers if for every y e H, there is an x & G such 
that x? = y. 

Theorem. Every finite group G is isomorphic to a subgroup of pth powers of some permutation group. 

Proof. Let G be a finite group, and let/7be an isomorphic permutation group onn elements, say au,ai2, '" ' 

Consider a permutation group Q on pn elements 

aii,ai2,-,ain; a2i,a22,~',a2n; •••/ apl,ap2,-,apn, 

defined in the following manner: For any permutation 

o = (au1au2-
au^'"(aljiaij2'"aljm) 

in P corresponds the permutation 

0 = ^h^li2 '"aiik)(a2i1a2i2 '"a2iJ '"(apiiapi2 '"aVi\J 
'•'(aihalj2--aljj(a2j2^a2jj---(apjlapj2^apjm) 

in the symmetric group Spn. Q is clearly isomorphic to P and each elemenr in Q is t h e / / " power of an element in 
Spn. In fact, d = TP, where 

T = (au1a2i1 -apilali2a2i2 '"api2 -aiika2ik -apik) 
-'(aij1a2jl •~apj1aij2a2j2 -apj2 -aljma2jm -apjm). 


