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1. INTRODUCTION 

The object of this note is to generalize the results of Catlin [1] and Wyler [3] for the multiplication of re-
currences. They studied second-order recurrences whereas the aim here is to set up definitions for their arbi-
trary order analogues. 

The work is also related to that of Peterson and Hoggatt [2] . They considered a type of multiplication of 
series in their exposition of the characteristic numbers of Fibonacci-type sequences. In the last section of this 
paper we see how a definition of a characteristic arises from the earlier definition of multiplication. 

We define an arbitrary order recursive sequence {Wn} by the recurrence relation 

r 
(1.1) Wn = Y, (-V^PjWn.j, n > r, 

j=l 

in which the P: are arbitrary integers, and there are suitable initial va lues ,^ , W2, —, Wr. (Suppose Wn = 0 
for/7 <0.) 

We shall need to consider some particular cases of these as well as some results associated with the product 
sums of the roots, at, of the associated auxiliary equation 

(1-2) art = E (-Vj+1Pjap . 

2. PRODUCT SUMS 

We define the product sum 

Stm = H,ajx
ah ~'aim 

with Sf0 ~ 1 • For example, when r = 3, 

$31 = &1+&2 a r |d $32 = CL1&2-
Some results we shall use now follow. 

(2.1) $tm = Pyn —at$t,m~l • 

Proof. 

Pm - atSt>rn^ = £ ajx ah -ajm - at £ ah aj% - a / m = £ ah ah -ajm . 
jj=t jH 

For example, when r = 3, 

P2~al$ll = <li(L2+a2a3+a3al —al(a2+a3) = a2a3 = $12-

(2.2) Str = 0 
27 
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Proof. Pj = Stj + atSt>H 

£ (-V^Pjap = £ M ^ V ^ - i ; hV-j+1St)Hap+1 ; 
j=i j=i j=i 

that is 

which yields the result. 
We note out of interest that: 

at ~ Str + Stoat 

(2.3) Stm = £ (-ir-Jpja?-J, P0 = 1 
j=0 

Proof. We use induction on m. 

sto = h Sn = Pi -at) •», 
w 

j=0 

r-1 r-1 

(2.4) 2 (-WStjAn+r-j = <% E (-WStjAr-j, n > 0. 
j=0 j=0 

Proof We use induction on/7. When/? is zero, the result is obvious. Suppose the result is true for/7 = 7, 
2,-,k- 1. Then 

£ (-1}J'StjAk-H>-j = Ak+r + J2 (-V'StjAk+r-j 
j=0 j=l 

r r-1 

" £ (-1)i+lPjAk+r-j + Y. (-V'StjAk+r^j 

r-1 

*<-1lr+lPrAk + Y, (-V'fStj-PjJAk+T-j 

r-1 

= (- 1)r+latSt>r^Ak + £ (-l)J-1atSt,j-iAk+T-j 
r i 

r-2 
= (-ir1atSt,r-iAk + '£ (-t)iatStjAk*T-j-i 

r-1 . M 

= a t Y . (-1)}StjAk+r-j-i 

k-r r~* 
= at r YJ (-V]StjAr_j (by the inductive hypothesis), 

j=o 
and so the result follows. In particular, it follows that 

r-1 r-1 
(2-5) £ (-IPStjAn+r^ = at £ (-DiStjAn+r-j-1 . 

j=0 j=0 
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3 for i > 1 

Result (2.4) Is a generalization of Wyler's: 
An+l-a>lAn = a^fAi-atAo). 

For ease of notation we shall write 
r-l 

H(t,An) = £ t-1)JStjAn+r-j. 
j=0 

3. MATRIX RESULTS 

We define matrices with rows / and columns/, 7 < /*, / < r: 

(3.1) W(n) = Mn+rA+]l, 

(3.2) M = [(-Di+iPH], with Pn = [YZn-o > 

(3.3) S(t) = [(-i)i+istiH], with' Stn = 0 for /? < 0 , 

(3.4) £ = / S y _ i / (Kronecker delta), 

(3.5) a = [qij], with ^ ={(-^ 

It follows from definitions (3.2), (3.3) and result (2.1) that 

M = f(-Vi+jPH] = [(-Vi+jSt)H]-at[(-1)i+JSt,H„i] = sM-atES® = (l-a^isM. 

It can be readily proved by induction on n that 

(3.6) W(n) = Qnw(0). 
Furthermore, 

S^AW = [2(t,AH)J, 

and so by using property (2.5), we find 

S^A([-atE) = [SijL(t,Ai^)]. 

4. MULTIPLICATION 

We can define a product {An}{Bn} of two of these sequences to be the sequence [Cn }.-

(4.1) C(°> = A(°>MB(°>. 

It follows from result (2.4) that 
(4.2) C(m+n) = Qmc(0)Qn = A(m)MB(n) ^ 

We can see how these generalize Catlin and Wyler. When r = 2: 

\pm+n+2 Cm+n+3\ 
Wm+n+l Cm-hn+2] 

= 

= 

™m+2 Am+3 
\Am+l Am+2^ 

Ayn+2 Am+3 
_pm+l Am+2 -

~7 -PA 
0 1 I 
PlAm+2 
plAm+i_ 

Bn+2 Bn+3 
[Bn+1 Bn+2} 
1 Bn+2 Bn+3 

Bn+1 ®n+2 

Result (4.2) becomes 

\ 

from which we get, after equating corresponding matrix entries: 

Cm+n+2 = Am+2Bn+2- P2Am+iBn+i , 

Cm+n+1 = Am+iBn+2+ Am+2Bn+i - PlAm+xBn+i , 

in which we have used the recurrence relation 
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PlA m+2 

These results agree with Catlin and Wyler. 
Forr = 3, we have 

\W3 W4 % 1 
\w2 w3 w4\ 
\wx w2 w3\ 

w(°) M = 
1 -Pi 
0 1 
0 D 

P2 

-Pi 
1 

, Q = 
Pi -P2 Ps 
1 0 0 
0 1 0 

Result (4.2) now becomes 

^rn+n+3 ^m+n+4 ^m-h%+5 
Cm+n+2 Cm+n+3 ^m+n+4 

^m+n+1 Cm+n+2 ^m+n+3 

Am+3 Am+4 - PiAm+3 Am+5 - PiAm+4 + P2Am+3 

Am+2 Am+3 - PiAm+2 Am+4 - PiAm+3 +P2Am+2 
Am+1 Am+2~ Pl^m+1 Am+3-P2Am+2+P2Am+i 

n+3 &n+4 Bn+5 
&n+2 Bn+3 &n+4 
&n+l &n+2 &n+3 

from which we obtain, for example, 
Cm+n+3 = Am+3Bn+3+ Am+4Bn+2- PlAm+3Bn+2+P3Am+2^n+l > 

We further obtain 

(4.3) £ <-lPStjCH = £ (-D^uAr.i £ (-7)%jBH . 
j=0 i=0 j=0 

Proof. We premultiply each side of definition (4.1) by£'^: 
s(t)c(0) = s(t)A(o)MB(o) = s(t)Aoff_atEfs(t)B(0) = Sip(t,AuOS(t)B(°K 

or 
X(t,C0) ^(t,Ct) 
^(t,d) 2(t,C_2) 

^(t,CUr) V(t,C_r) 

V(t,A0) 

?(t,Cr_2) 

and so, 

2/f, A_t) 

Z(t,AUr) 0 

Z(t,C0) 

o - 6 
O ••• 0 Y.it.B.t) 2(t,B_2) •« ?,(t,Br„2) 

-L(t,BUr) X(t,B.r) - Z(t,B0) 

Z.(t,C0) = 2(t,A0)2(t,B0), 

as required. When r = 2, t= 1, result (4.3) becomes 
(C2-a2C1) = (A2-a2A1)(B2-a2B1) 

as in Wyler and Catlin. When r = 3,t= 1: 
(C3 - (a2 + aj)C2 + a2a-3Ci) = (A3 - (a2 + a^)A2 + a2a3AiHB$ - (a2 + a^)B2 + a2a^Bx). 

Using property (2.4), we get 

T,(-VlSHAm+rM J: (-1)istjBn+H = a?*1 Z f-V'SaAr., £ (-D%jBH 
i=0 j=0 i=0 j=0 

r-1 r-1 

i=o ro 
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as a generalization of Wyler's: 

Cm+n+2 ~ &lCm+n+l = O*™ (A 2 ~ 0>1 A1 HB2 - a^B^ ) = (Am+2 - <liAm+i)(Bn+2 - (LiBn+i) . 

5. NORMS AND DUALS 

As in Catlin, we can define norms and duals. We define the norm or characteristic of {Wn} as 

r r-1 
(5.1) N{wn) - f l l (-iVStjWr-j • 

t=l j=0 

For example,for the "basic" sequences {US)Tl} which satisfy the recurrence relation (1.1) but have initial 
conditions 

Us,n = $s,n> n = 1*2, ~,r, 
we have 

r r-1 r 
N{Us,n) = n E (-V%jUs,r-j = I I (-1'r'%r-s I 

t=l j=0 t=l 

in particular, N{(Jrn} = 1. (The "basic" properties are seen in 
r 

Wn= L Us,nWs, 
s=l 

for instance.) 
(5.2) N{An)N{Bn) = N{An){Bn) . 
Proof. 

N{An}N{Bn) = ft E (-1)%iAr-i E (-VjStjBH = n E (-1)jStjCr-j = N{Cn) = N{An}[Bn). 
t=l i=0 j=0 t=l j=0 

As 
2 ft, £ 0 j = V{t,Ao)V{t,B0) 

is related to c(°)=A^MB(°K so is 
/V{Cn} = /V{/ln}/l/{£n} 

related to \C(0)\ = \A(°)\\B(°)\. 

When/- = -?, we have in fact that 

N{Wn)= \Z2 w3l = W2
2-WlW3 = (W2-a1W1)(W2-a2W1). 

Furthermore, from definition (5.1) we have that 

py{wn] = pn
r n i : (-wstjWr-j = n < 2 (-w'stjWr-j = n E M ^ - W W , 
t=l j=0 t=l j=0 t=l j=0 

as a generalization of Wyler's: 

We can compare this with 

\W(n)\ = \Qn\\w(°)\ in Eq. (3.6) 

= P«\W°\. 
Similarly, we can form a dual as in Catlin. Given the recursive sequence {Wn}, we form its dual {J4^}from 
the initial values 

Wn, n = 1,2, -,r: 
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(5.3) 

where w = [W^, W2, •• 

and E is the nilpotent matrix of order r defined in (3.4). For example, when r = 2, 

and 

as in Catlin. \Nhen r = 3, 

= ~1 0\\ 
-1 i\ \w2 

w\ = wt, w*2 = w2-wu 

7 
-7 
-7 

0 0 I 
7 0 

- 7 7J 

\Wt 

\w2 
[w3_ 

w* 
lW*3 

and so on. Essentially, what has been done here is to illustrate how the work for the second-order recurrences 
can be extended to any order. It may interest others to develop the algebra further by considering the canoni-
cal forms of elements in various extension fields and rings. 

Another line of approach is to consider the treatment here as a generalization of Simson's (second-order) re-
lation: 

^2 

or, since N{Fn}= 1, 
A2

n+1-AnAn+2 = Pn
2N{An) 

Fn+1 - FnFn+2 = (-l)n 

for the Fibonacci numbers. 
Gratitude is expressed to Paul A. Catlin of Ohio State University, Columbus, for criticisms of an earlier 

draft and copies of some relevant unpublished material. 
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