ON THE MULTIPLICATION OF RECURSIVE SEQUENCES

A. G. SHANNON

The New South Wales Institute of Technology, Broadway, Australia

1. INTRODUCTION

The object of this note is to generalize the results of Catlin [1] and Wyler [3] for the multiplication of recurrences. They studied second-order recurrences whereas the aim here is to set up definitions for their arbitrary order analogues.
The work is also related to that of Peterson and Hoggatt [2]. They considered a type of multiplication of series in their exposition of the characteristic numbers of Fibonacci-type sequences. In the last section of this paper we see how a definition of a characteristic arises from the earlier definition of multiplication.
We define an arbitrary order recursive sequence $\left\{W_{n}\right\}$ by the recurrence relation

$$
\begin{equation*}
W_{n}=\sum_{j=1}^{r}(-1)^{j+1} P_{j} W_{n-j}, \quad n>r \tag{1.1}
\end{equation*}
$$

in which the P_{j} are arbitrary integers, and there are suitable initial values, $W_{1}, W_{2}, \cdots, W_{r}$. (Suppose $W_{n}=0$ for $n \leqslant 0$.)
We shall need to consider some particular cases of these as well as some results associated with the product sums of the roots, a_{t}, of the associated auxiliary equation

$$
\begin{equation*}
a_{t}^{r}=\sum_{j=1}^{r}(-1)^{j+1} p_{j} a_{t}^{r-j} \tag{1.2}
\end{equation*}
$$

2. PRODUCT SUMS

We define the product sum

$$
S_{t m}=\sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}
$$

with $S_{t o}=1$. For example, when $r=3$,

$$
S_{31}=a_{1}+a_{2} \quad \text { and } \quad S_{32}=a_{1} a_{2}
$$

Some results we shall use now follow.

$$
\begin{equation*}
S_{t m}=P_{m}-a_{t} S_{t, m-1} \tag{2.1}
\end{equation*}
$$

Proof.

$$
P_{m}-a_{t} S_{t, m-1}=\sum a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}-a_{t} \sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}=\sum_{j \neq t} a_{j_{1}} a_{j_{2}} \cdots a_{j_{m}}
$$

For example, when $r=3$,

$$
P_{2}-a_{1} S_{11}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}-a_{1}\left(a_{2}+a_{3}\right)=a_{2} a_{3}=S_{12}
$$

$$
\begin{equation*}
S_{t r}=0 \tag{2.2}
\end{equation*}
$$

Proof.

$$
P_{j}=S_{t j}+a_{t} S_{t, j-1}
$$

$$
\sum_{j=1}^{r}(-1)^{j+1} P_{j} a_{t}^{r-j}=\sum_{j=1}^{r}(-1)^{j+1} S_{t j} a_{t}^{r-j}-\sum_{j=1}^{r}(-1)^{j+1} S_{t, j-1} a_{t}^{r-j+1}
$$

that is

$$
a_{t}^{r}=S_{t r}+s_{t o} a_{t}^{r}
$$

which yields the result.
We note out of interest that:

$$
\begin{equation*}
S_{t m}=\sum_{j=0}^{m}(-1)^{m-j} p_{j} a_{t}^{m-j}, \quad P_{0}=1 \tag{2.3}
\end{equation*}
$$

Proof. We use induction on m.

$$
\begin{gather*}
S_{t 0}=1, \quad S_{t 1}=P_{1}-a_{t}, \quad \cdots, \\
S_{t m}=P_{m}-a_{t} S_{t, m-1}=P_{m}-a_{t} P_{m-1}+a_{t}^{2} S_{t, m-2}=\sum_{j=0}^{m}(-1)^{m-j} P_{j} a_{t}^{m-j} . \\
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}=a_{t}^{n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{r-j}, \quad n \geqslant 0 . \tag{2.4}
\end{gather*}
$$

Proof. We use induction on n. When n is zero, the result is obvious. Suppose the result is true for $n=1$, $2, \cdots, k-1$. Then

$$
\begin{aligned}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} & =A_{k+r}+\sum_{j=1}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} \\
& =\sum_{j=1}^{r}(-1)^{j+1} P_{j} A_{k+r-j}+\sum_{j=1}^{r-1}(-1)^{j} S_{t j} A_{k+r-j} \\
& =(-1)^{r+1} P_{r} A_{k}+\sum_{j=1}^{r-1}(-1)^{j}\left(S_{t j}-P_{j}\right) A_{k+r-j} \\
& =(-1)^{r+1} a_{t} S_{t, r-1} A_{k}+\sum_{j=1}^{r-1}(-1)^{j-1} a_{t} S_{t, j-1} A_{k+r-j} \\
& =(-1)^{r-1} a_{t} S_{t, r-1} A_{k}+\sum_{j=0}^{r-2}(-1)^{j} a_{t} S_{t j} A_{k+r-j-1} \\
& =a_{t} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{k+r-j-1} \\
& =a_{t}^{k-r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{r-j} \text { (by the inductive hypothesis), }
\end{aligned}
$$

and so the result follows. In particular, it follows that

$$
\begin{equation*}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}=a_{t} \sum_{j=0}^{r-1}(-1)^{i} S_{t j} A_{n+r-j-1} \tag{2.5}
\end{equation*}
$$

Result (2.4) is a generalization of Wyler's:

$$
A_{n+1}-a_{1} A_{n}=a_{2}^{n}\left(A_{1}-a_{1} A_{0}\right)
$$

For ease of notation we shall write

$$
\sum\left(t, A_{n}\right)=\sum_{j=0}^{r-1}(-1)^{j} S_{t j} A_{n+r-j}
$$

3. MATRIX RESULTS

We define matrices with rows i and columns $j, 1 \leqslant i, j \leqslant r$:

$$
\begin{equation*}
W^{(n)}=\left[W_{n+r-i+j}\right] \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
M=\left[(-1)^{i+j} p_{j-i}\right], \text { with } P_{n}=\left\{\begin{array}{l}
0 \text { for } n<0 \\
1 \text { for } n=0
\end{array},\right. \tag{3.2}\\
S^{(t)}=\left[(-1)^{i+j} S_{t, j-i}\right], \text { with } S_{t n}=0 \text { for } n<0, \tag{3.3}\\
E=\left[S_{i, j-1}\right] \quad \text { (Kronecker delta), } \tag{3.4}\\
Q=\left[a_{i j}\right], \text { with } q_{i j}=\left\{\begin{array}{l}
(-1)^{j+1} P_{j-1, j} \text { for } i=1 \\
S_{i-1} i>1
\end{array} .\right. \tag{3.5}
\end{gather*}
$$

It follows from definitions (3.2), (3.3) and result (2.1) that

$$
M=\left[(-1)^{i+j} P_{j-i}\right]=\left[(-1)^{i+j} S_{t, j-1}\right]-a_{t}\left[(-1)^{i+j} S_{t, j-i-1}\right]=S^{(t)}-a_{t} E S^{(t)}=\left(I-a_{t} E\right) S^{(t)}
$$

It can be readily proved by induction on n that
(3.6)

$$
w^{(n)}=a^{n} W^{(0)}
$$

Furthermore,

$$
S^{(t)} A^{(0)}=\left[\Sigma\left(t, A_{j-i}\right)\right]
$$

and so by using property (2.5), we find

$$
S^{(t)} A\left(\left[-a_{t} E\right)=\left[S_{1 j} \Sigma\left(t, A_{1-i}\right)\right]\right.
$$

4. MULTIPLICATION

We can define a product $\left\{A_{n}\right\}\left\{B_{n}\right\}$ of two of these sequences to be the sequence $\left\{C_{n}\right\}$:
(4.1)

$$
C^{(0)}=A^{(0)} M B^{(0)}
$$

It follows from result (2.4) that

$$
\begin{equation*}
C^{(m+n)}=Q^{m} C^{(0)} Q^{n^{T}}=A^{(m)} M B^{(n)} \tag{4.2}
\end{equation*}
$$

We can see how these generalize Catlin and Wyler. When $r=2$:

$$
W^{(0)}=\left[\begin{array}{ll}
W_{2} & W_{3} \\
W_{1} & W_{2}
\end{array}\right], \quad M=\left[\begin{array}{cc}
1 & -P_{1} \\
0 & 1
\end{array}\right], \quad Q=\left[\begin{array}{cc}
P_{1} & -P_{2} \\
1 & 0
\end{array}\right] .
$$

Result (4.2) becomes

$$
\begin{aligned}
{\left[\begin{array}{ll}
C_{m+n+2} & C_{m+n+3} \\
C_{m+n+1} & C_{m+n+2}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{m+2} & A_{m+3} \\
A_{m+1} & A_{m+2}
\end{array}\right]\left[\begin{array}{cc}
1 & -P_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
B_{n+2} & B_{n+3} \\
B_{n+1} & B_{n+2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
A_{m+2} & A_{m+3}-P_{1} A_{m+2} \\
A_{m+1} & A_{m+2}-P_{1} A_{m+1}
\end{array}\right]\left[\begin{array}{ll}
B_{n+2} & B_{n+3} \\
B_{n+1} & B_{n+2}
\end{array}\right] .
\end{aligned}
$$

from which we get, after equating corresponding matrix entries:

$$
\begin{gathered}
C_{m+n+2}=A_{m+2} B_{n+2}-P_{2} A_{m+1} B_{n+1} \\
C_{m+n+1}=A_{m+1} B_{n+2}+A_{m+2} B_{n+1}-P_{1} A_{m+1} B_{n+1}
\end{gathered}
$$

in which we have used the recurrence relation
[FEB.

$$
A_{m+3}=P_{1} A_{m+2}-P_{2} A_{m+1}
$$

These results agree with Catlin and Wyler.
For $r=3$, we have

$$
W^{(0)}=\left[\begin{array}{lll}
W_{3} & W_{4} & W_{5} \\
W_{2} & W_{3} & W_{4} \\
W_{1} & W_{2} & W_{3}
\end{array}\right], \quad M=\left[\begin{array}{ccc}
1 & -P_{1} & P_{2} \\
0 & 1 & -P_{1} \\
0 & 0 & 1
\end{array}\right], \quad Q=\left[\begin{array}{ccc}
P_{1} & -P_{2} & P_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Result (4.2) now becomes
$\left[\begin{array}{lll}C_{m+n+3} & C_{m+n+4} & C_{m+n+5} \\ C_{m+n+2} & C_{m+n+3} & C_{m+n+4} \\ C_{m+n+1} & C_{m+n+2} & C_{m+n+3}\end{array}\right]$

$$
=\left[\begin{array}{llll}
A_{m+3} & A_{m+4}-P_{1} A_{m+3} & A_{m+5}-P_{1} A_{m+4}+P_{2} A_{m+3} \\
A_{m+2} & A_{m+3}-P_{1} A_{m+2} & A_{m+4}-P_{1} A_{m+3}+P_{2} A_{m+2} \\
A_{m+1} & A_{m+2}-P_{1} A_{m+1} & A_{m+3}-P_{2} A_{m+2}+P_{2} A_{m+1}
\end{array}\right] \cdot\left[\begin{array}{lll}
B_{n+3} & B_{n+4} & B_{n+5} \\
B_{n+2} & B_{n+3} & B_{n+4} \\
B_{n+1} & B_{n+2} & B_{n+3}
\end{array}\right]
$$

from which we obtain, for example,

$$
C_{m+n+3}=A_{m+3} B_{n+3}+A_{m+4} B_{n+2}-P_{1} A_{m+3} B_{n+2}+P_{3} A_{m+2} B_{n+1}
$$

We further obtain

$$
\begin{equation*}
\sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=\sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j} \tag{4.3}
\end{equation*}
$$

Proof. We premultiply each side of definition (4.1) by $S^{(t)}$:

$$
S^{(t)} C^{(0)}=S^{(t)} A^{(0)} M B^{(0)}=S^{(t)} A^{0}\left(I-a_{t} E\right) S^{(t)} B^{(0)}=S_{i j} \Sigma\left(t, A_{1-i}\right) S^{(t)} B^{(0)}
$$

or
$\left[\begin{array}{llll}\Sigma\left(t, C_{0}\right) & \Sigma\left(t, C_{1}\right) & \cdots & \Sigma\left(t, C_{r-1}\right) \\ \Sigma\left(t, C_{-1}\right) & \Sigma\left(t, C_{-2}\right) & \cdots & \Sigma\left(t, C_{r-2}\right) \\ \Sigma\left(t, C_{1-r}\right) & \Sigma\left(t, C_{-r}\right) & \cdots & \Sigma\left(t, C_{0}\right)\end{array}\right]$

$$
=\left[\begin{array}{llll}
\Sigma\left(t, A_{0}\right) & 0 & \cdots & 0 \\
\Sigma\left(t, A_{-1}\right) & 0 & \cdots & 0 \\
\Sigma\left(t, A_{1-r}\right) & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{llll}
\Sigma\left(t, B_{0}\right) & \Sigma\left(t, B_{1}\right) & \cdots & \Sigma\left(t, B_{r-1}\right) \\
\Sigma\left(t, B_{-1}\right) & \Sigma\left(t, B_{-2}\right) & \cdots & \Sigma\left(t, B_{r-2}\right) \\
\Sigma\left(t, B_{1-r}\right) & \Sigma\left(t, B_{-r}\right) & \cdots & \Sigma\left(t, B_{0}\right)
\end{array}\right]
$$

and so,

$$
\Sigma\left(t, C_{0}\right)=\Sigma\left(t, A_{0}\right) \Sigma\left(t, B_{0}\right)
$$

as required. When $r=2, t=1$, result (4.3) becomes

$$
\left(C_{2}-a_{2} C_{1}\right)=\left(A_{2}-a_{2} A_{1}\right)\left(B_{2}-a_{2} B_{1}\right)
$$

as in Wyler and Catlin. When $r=3, t=1$:

$$
\left(C_{3}-\left(a_{2}+a_{3}\right) C_{2}+a_{2} a_{3} C_{1}\right)=\left(A_{3}-\left(a_{2}+a_{3}\right) A_{2}+a_{2} a_{3} A_{1}\right)\left(B_{3}-\left(a_{2}+a_{3}\right) B_{2}+a_{2} a_{3} B_{1}\right)
$$

Using property (2.4), we get

$$
\begin{gathered}
\sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{m+r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{n+r-j}=a_{t}^{m+n} \sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j} \\
=a_{t}^{m+n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=\sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{m+n+r-j}
\end{gathered}
$$

as a generalization of Wyler's:

$$
C_{m+n+2}-a_{1} C_{m+n+1}=a_{2}^{m+n}\left(A_{2}-a_{1} A_{1}\right)\left(B_{2}-a_{1} B_{1}\right)=\left(A_{m+2}-a_{1} A_{m+1}\right)\left(B_{n+2}-a_{1} B_{n+1}\right) .
$$

5. NORMS AND DUALS

As in Catlin, we can define norms and duals. We define the norm or characteristic of $\left\{W_{n}\right\}$ as

$$
\begin{equation*}
N\left\{W_{n}\right\}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j} . \tag{5.1}
\end{equation*}
$$

For example, for the "basic" sequences $\left\{U_{s, n}\right\}$ which satisfy the recurrence relation (1.1) but have initial conditions

$$
u_{s, n}=S_{s, n}, \quad n=1,2, \cdots, r
$$

we have

$$
N\left\{U_{s, n}\right\}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} U_{s, r-j}=\prod_{t=1}^{r}(-1)^{r-s} S_{t, r-s} ;
$$

in particular, $N\left\{U_{r, n}\right\}=1$. (The "basic" properties are seen in

$$
W_{n}=\sum_{s=1}^{r} U_{s, n} W_{s}
$$

for instance.)
(5.2)

$$
N\left\{A_{n}\right\} N\left\{B_{n}\right\}=N\left\{A_{n}\right\}\left\{B_{n}\right\}
$$

Proof.
$N\left\{A_{n}\right\} N\left\{B_{n}\right\}=\prod_{t=1}^{r} \sum_{i=0}^{r-1}(-1)^{i} S_{t i} A_{r-i} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} B_{r-j}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} C_{r-j}=N\left\{C_{n}\right\}=N\left\{A_{n}\right\}\left\{B_{n}\right\}$.
As

$$
\Sigma\left(t, C_{0}\right)=\Sigma\left(t, A_{0}\right) \Sigma\left(t, B_{0}\right)
$$

is related to $C^{(0)}=A^{(0)} M B^{(0)}$, so is

$$
N\left\{C_{n}\right\}=N\left\{A_{n}\right\} N\left\{B_{n}\right\}
$$

related to $\left|C^{(0)}\right|=\left|A^{(0)}\right|\left|B^{(0)}\right|$.
When $r=2$, we have in fact that

$$
N\left\{W_{n}\right\}=\left|\begin{array}{ll}
W_{2} & W_{3} \\
w_{1} & w_{2}
\end{array}\right|=W_{2}^{2}-w_{1} W_{3}=\left(W_{2}-a_{1} w_{1}\right)\left(W_{2}-a_{2} W_{1}\right)
$$

Furthermore, from definition (5.1) we have that

$$
P_{r}^{n} N\left\{W_{n}\right\}=P_{r}^{n} \prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j}=\prod_{t=1}^{r} a_{t}^{n} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{r-j}=\prod_{t=1}^{r} \sum_{j=0}^{r-1}(-1)^{j} S_{t j} W_{n+r-j}
$$

as a generalization of Wyler's:

$$
W_{n+2}^{2}-W_{n+1} W_{n+3}=P_{2}^{n} N\left\{W_{n}\right\}
$$

We can compare this with

$$
\begin{aligned}
\left|W^{(n)}\right| & =\left|Q^{n}\right|\left|W^{(0)}\right| \quad \text { in Eq. (3.6) } \\
& =P_{r}^{n}\left|W^{0}\right|
\end{aligned}
$$

Similarly, we can form a dual as in Catlin. Given the recursive sequence $\left\{W_{n}\right\}$, we form its dual $\left\{W_{n}^{*}\right\}$ from the initial values

$$
W n, n=1,2, \cdots, r:
$$

$$
\begin{align*}
& {\underset{\sim}{w}}^{*}=\left(I-\sum_{k=1}^{r-1}\left(E^{T}\right)^{k}\right) \underset{\sim}{w} \tag{5.3}\\
& w=\left[W_{1}, W_{2}, \cdots, W_{r}\right]^{T},
\end{align*}
$$

and E is the nilpotent matrix of order r defined in (3.4). For example, when $r=2$,

$$
\left[\begin{array}{l}
W_{1}^{*} \\
W_{2}^{*}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
W_{1} \\
W_{2}
\end{array}\right],
$$

$$
W_{1}^{*}=W_{1}, \quad W_{2}^{*}=W_{2}-W_{1},
$$

as in Catlin. When $r=3$,

$$
\left[\begin{array}{l}
W_{1}^{*} \\
W_{2}^{*} \\
W_{3}^{*}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
W_{1} \\
W_{2} \\
W_{3}
\end{array}\right],
$$

and so on. Essentially, what has been done here is to illustrate how the work for the second-order recurrences can be extended to any order. It may interest others to develop the algebra further by considering the canonical forms of elements in various extension fields and rings.
Another line of approach is to consider the treatment here as a generalization of Simson's (second-order) relation:

$$
A_{n+1}^{2}-A_{n} A_{n+2}=P_{2}^{n} N\left\{A_{n}\right\},
$$

or, since $N\left\{F_{n}\right\}=1$,

$$
F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}
$$

for the Fibonacci numbers.

Gratitude is expressed to Paul A. Catlin of Ohio State University, Columbus, for criticisms of an earlier draft and copies of some relevant unpublished material.

REFERENCES

1. Paul A. Catlin, "On the Multiplication of Recurrences," The Fibonacci Quarterly, Vol. 12 (1974), pp. 365 -368 .
2. Brian Peterson and V. E. Hoggatt, Jr., "On the Solutions to the Diophantine Equation $x^{2}+x y-y^{2}= \pm D$, or the Number of Fibonacci-Type Sequences with a Given Characteristic," The Fibonacci Quarterly, Vol. 13 (1975), pp. 243-251.
3. Oswald Wyler, "On Second-order Recurrences," Amer. Math. Monthly, Vol. 72 (1965), pp. 500-506.
