from which we get that

$$
W_{n}=\left(L_{2 n}-2\right) / n
$$

or

$$
L_{2 n}-2=\sum_{\gamma(n)} \frac{(-1)^{k-1} n}{k} F_{2 a_{1}} \cdots F_{2 a_{k}}
$$

These properties have been generalized elsewhere for arbitrary order recurrence relations [5] .
Hoggatt and Lind [3] have also developed similar results in an earlier paper.
The author would like to thank Dr. A. J. W. Hilton of the University of Reading, England, for suggesting the problem.

RE FERENCES

1. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
2. A. J. W. Hilton, "Spanning Trees and Fibonacci and Lucas Numbers," The Fibonacci Quarterly, Vol. 12, No. 3 (October 1974), pp. 259-262.
3. V. E. Hoggatt, Jr., and D. A. Lind, "Fibonacci and Binomial Properties of Weighted Compositions," J. of Combinatorial Theory, Vol. 4, No. 2 (March 1968), pp. 121-124.
4. Kenneth R. Rebman, "The Sequence 151645121320 … in Combinatorics," The Fibonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), pp. 51-55.
5. A. G. Shannon, "Ordered Partitions and Arbitrary Order Linear Recurrence Relations," Mathematics Student, in press.

* * *

EMBEDDING A GROUP IN THE $p^{t h}$ POWERS

HUGOS.SUN
California State University, Fresno, California

In a finite group G, the set of squares, cubes, or $p^{\text {th }}$ powers in general, does not necessarily constitute a subgroup. However, we can always embed a finite group into the set of squares, cubes, or any $p^{t h}$ powers of another group.
A subgroup H of a group G is said to be a subgroup of $\mathrm{p}^{\text {th }}$ powers if for every $y \in H$, there is an $x \in G$ such that $x^{p}=y$.
Theorem. Every finite group G is isomorphic to a subgroup of $p^{\text {th }}$ powers of some permutation group.
Proof. Let G be a finite group, and let P be an isomorphic permutation group on n elements, say a_{11}, a_{12}, \cdots, $a_{1 n}$.

Consider a permutation group Q on $p n$ elements

$$
a_{11}, a_{12}, \cdots, a_{1 n} ; \quad a_{21}, a_{22}, \cdots, a_{2 n} ; \cdots, \quad a_{p 1}, a_{p 2}, \cdots, a_{p n}
$$

defined in the following manner: For any permutation

$$
\sigma=\left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right) \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)
$$

in P corresponds the permutation

$$
\begin{aligned}
\hat{\sigma}= & \left(a_{1 i_{1}} a_{1 i_{2}} \cdots a_{1 i_{k}}\right)\left(a_{2 i_{1}} a_{2 i_{2}} \cdots a_{2 i_{n}}\right) \cdots\left(a_{p i_{1}} a_{p i_{2}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{1 j_{2}} \cdots a_{1 j_{m}}\right)\left(a_{2 j_{2}} \cdots a_{2 j_{m}}\right) \cdots\left(a_{p j_{1}} a_{p j_{2}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

in the symmetric group $S_{p n} . Q$ is clearly isomorphic to P and each elemenr in Q is the $p^{\text {th }}$ power of an element in $S_{p n}$. In fact, $\hat{\sigma}=\tau^{p}$, where

$$
\begin{aligned}
\tau= & \left(a_{1 i_{1}} a_{2 i_{1}} \cdots a_{p i_{1}} a_{1 i_{2}} a_{2 i_{2}} \cdots a_{p i_{2}} \cdots a_{1 i_{k}} a_{2 i_{k}} \cdots a_{p i_{k}}\right) \\
& \cdots\left(a_{1 j_{1}} a_{2 j_{1}} \cdots a_{p j_{1}} a_{1 j_{2}} a_{2 j_{2}} \cdots a_{p j_{2}} \cdots a_{1 j_{m}} a_{2 j_{m}} \cdots a_{p j_{m}}\right)
\end{aligned}
$$

