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1. INTRODUCTION

The author had been working on the safe combinations (Wythoff pairs) in Wythoff’s game [11] when the re-
searches of Silber [9, 10] came to his attention. As the two approaches differ somewhat, it is probably worthwhile
to indicate briefly the author’s alternative treatment, which may throw a little light on the general problem.

Both Silber and the author use the fundamental idea of the canonical Fibonacci representation of an integer. While
much work has been done recently on Fibonacci representation theory and on Nim-related games, we will attempt
to minimize our reference list.

Wythoff pairs have been analyzed in detail by Caritz, Scoville and Hoggatt, e.g., in [3, 4], though without specific
reference to Wythoff's game. For a better understanding of the principles used in our reasoning which follows, itis
desirable to present a description of the nature and strategy of Wythoff's game.

2. WYTHOFF'S GAME

Wythotf's game was first investigated by W. A, Wythoff [11] in 1907. It is similar toNim (see Bouton [2]) and
may be described thus (Ball [1]):

Unspecified aumbers of counters occur in each of two heaps. In each draw, a player may freely choose counters
from either (i) one heap, or (ii) two heaps, provided that in this case he must take the same number from each.

For example, heaps of 1 and 2 can be reduced to 0 and 2, or 1 and 1, or 1 and 0. The player who takes the last
counter wins the game.

As Coxeter [5] remarks: “An experienced player, playing against a novice, can nearly always win by remembering
which pairs of numbers are “safe combinations’’: safe for him to leave on the table with the knowledge that, if he
does not make any mistake later on, he is sure to win. (If both players know the safe combinations, the outcome de-
pends on whether the initial heaps form a safe or unsafe combination.)”

The safe combinations for Wythoff's game are known to be the pairs:

n=1 2 3 4 5 6 7 8
(1
(1,2), (35), (47, (6,100, (8,13), (9,15), (11,18), (12,20),

A safe pair may also be called a Wythoff pair.
There are several interesting things about the integers occurring in these safe combinations. They are:

(1) Members of the first pair of integers differ by 1, of the second pair by 2, of the third by 3, ---, of the nth
pair by n.

(1} The 0" pair is (a,,, b,) = ([nal, [na?]), where the symbol [x] denotes the greatest integer which is less
than, or equal to, x, and a = (1 +/5)/2 = 1,618 (so that a®=(3 +1/5)/2 = 2.618). We recognize a as the
“golden section” number which is a root of x? — x — 1 =0 (i.e.,, a2 = a + 1). Note that b, = a,, +n, i.e.,
[na?] = [na] +n.

(111) In the list of integers occurring in the ordered pairs for safe combinations, each integer appears exactly once
(i.e., every interval between two consecutive positive integers contains just one multiple of either @ or a“, as
Ball [1] observes).

(IV) Inevery pair of a safe combination, the smaller number is the smallest integer not already used and the larger
number is chosen so that the difference in the nth pair isn.
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It might reasonably be asked: How does the "‘golden section” number a come into the solution of Wythoff's game?
The answer is detailed in Coxeter [5] where the solution given by Hyslop (Glasgow) and Ostrowski (Gattingen) in
1927, in response to a problem proposed by Beatty (Toronto) a year earlier, is reproduced. (Coxeter notes that
Wythoff himself obtained his solution "out of a hat”” without any mathematical justification). Basically, the answer
to our query, as given by Hyslop and Ostrowski quoted in [5], depends on the occurrence of the equations (1/x) +
(1/y) =1,y = x + 1 which, when y is eliminated, yield our quadratic equation x2-x-1=0.

That the Wythoff pairs are ultimately connected with Fibonacci numbers should not surprise us since, by Hoggatt

[6], the ntk Fibonacci number
F. = ﬁ + 7_
! [\/7 2 ]

forn=1,2,3, -, ie., both Wythoff pairs and Fibonacci numbers involve [x/. (See (I1) above.)
The first forty Wythoff pairs are listed in Silber [9]. From the rules of construction (I)—(IV) it is only a matter of
patience for the interested reader to form as long a list of Wythoff pairs as is desired.

3. WYTHOFF PAIRS AS MEMBERS OF {H,,(p,q) }
Consider the generalized Fibonacci sequence {4, (p,g)} of integers (Horadam [7]):
Hy H;y Hy H3 Hy Hs Hg Hy

) q p ptqg 2p+q 3p+2qg 5p+3qg 8p+hq 13p+8g
where
(3) Hy = Hyp1 +Hp2 (m > 2)

in which we omit p,g when there is no possible ambiguity. The restriction m > 2 in (3) may be removed, if desired,
to allow for negative subscripts.
The ordinary Fibonacci sequence {Fm} with Fp=0, F1=F2=1occurswhenp=17,9g=0, i.e.,

@) Fm = Hn(1,0).
Itis known [7] that
{5) Hy = pFm +qFpm_q.

Every positive integer ¥/

(a) produces a H; (= [Na] = p) which is the first member of a Wythoff pair, i.e., sequences {H,, (/NaJ, N) } yield
all the Wythoff pairs; and

(b) is, by (IV), a member of a Wythoff pair and a member of some H-sequence (in fact, of infinitely many H-
sequences of which the given H-sequence forms a part),
e.q., 52 = H;(52,32) =H,(32,20) = H3(20,12) = H4(12,8) = H5(8,4) = Hg (4, 4) = H7(4,0) = ...
with infinite extension through negative values of m if the restriction m > 2 in (3) is removed.
" Every positive integer /V is obviously also a member of infinitely many non-Wythoff pairs belonging to infinitely
many different +-sequences, e.g.,

N = 2000 = 20F;{ +4F19(= H11(20,4)) = 20 x 89+4 x 55

is a member of all the H-sequences resulting from the solution, by Euclid’s algorithm or by congruence methods, of
the Diophantine equation 89x + 55y = 2000. Some instances of this are

2000 = H{4(75,-85) = H{1(-35,93)
yielding the non-Wythoff pairs (1235,2000) anc (1237,2000) whereas (1236,2000) is aWythoff pair (= (a754,6 764)).
Now make the identification with the notation in [9]:
(6) an = Hm, by = Hpust, ap, = Hpeo forsome pg .

For example, n = 6 yields the Wythoff pair (ag, bg) = (9, 15) = (H3,H4) for p = 3, q = 3.
To save space, we will assume the results in [9] expressed in our notation:
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Theorem. Al pairs in an H-sequence after a Wythoff pair are Wythoff pairs, i.e., each Wythoff pair generates
a sequence of Wythoff pairs.

Theorem. A Wythoff pair (H,,, Hpy+1) is primitive if and only if (for H,, = a,) n = a5, for some positiveinte-
ger &, and for some positive integers g, g.

A primitive Wythoff pair is a Wythoff pair which is not generated by any other Wythoff pairs. Thus, (1,2}, (4.7),
(6,10), (9,15), (88,143} are primitive Wythoff pairs.

4. ZECKENDGORF'S CANONICAL REPRESENTATION

Zeckendorf’s Theorem, quoted in Lekkerkerker [8], states: (Zeckendorf’s Theorem) Every positive integer /' can
be represented as the sum of distinct Fibonacci numbers, using no two consecutive numbers, and such a representa-
tion is unique.

Symbolically, this canonical (Zeckendorf) representation of ¥ is

{7) N = Fpy#Fry+tFp,,

where

(8) ki > k3 > - > k, = 2 (r dependingon )
and

(9) kj—kj+1 =2 {/ = 7,2, I 7).

From [9], the criteria for a Wythoff pair (H,,,, H,,+1) are that, in the canonical representation (7), with (8) and
9,

A. { Hy = Fk1+Fk2+'"+Fkr
(i Hm+1 = Frye1 # Flgrs 1t Fraq
(ii) k, iseven.
For a primitive Wythoff pair, we have further that
"0 k = 2
i N = Frge# Frges ot e
where
(10) z=k—1 tky—z = 1)

so the last term inn(B(ii)) is F; = 1.

Examples. (1) Non-Wythoff pair (62, 100)
62 = Fig+Fs+F3 so k. = 3 which isnot even, and Alii)
is therefore invalid {though A(i} holds).
(2) Non-Wythoff pair (62, 101)
101 = Fyq+Fg+ Fq+FysoAli)isinvalid (and so is Afii)).
(3) Non-primitive Wythoff pair (1236, 2000) = (2744, b 764/
1236 = Fy4+ Fq13+F7+ F4 soBl(i) isinvalid (and so is B{ii)), though A(i), A(ii) are valid.
(4) Primitive Wythoff pair (108, 175) = (a47, bs7)

108 = Fi1+Fy7+F5+F, 175 = Fip+Fg+Fg+F3
so A(i), Alii), B(i) are valid and (175 — 108 =) 67 = Fyg+ Fg+Fq+ Fq
so B(ii} holds.

5. WYTHOFF PAIRS, ZECKENDORF'S REPRESENTATION AND {H,,(p,/) }

From (5) and (7) we have, fork; =m >m -1 > k,,
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(1 N = Hulpg) = pFm+qFmg = Fp +Fey et Fp,
A little thought reveals that

(12) N = Hulpg) = Huwlp'g'),

where

(13) m =z

(14) P’ = Hm_r+1(p.q)

(15) q" = Huz(p.q)

in which (p’, p” + g°) is a primitive Wythoff pair. That is, the sequence {Hm'(p’,q’)} is generated by a primitive
Wythoff pair.

The explanation of {12)—(15) is as follows. If, in (12), p” is the first member of a primitive Wythoff pair, then by
B(i) its canonical representation must end with F,. Thus, by (11), p” precedes N by k, — 2 =z — 1 places by (10),
i.e., p”is located in term position m — (z— 7) =m — z + 1 in the H-sequence. Hence, we have (14) and consequently
(15). Clearly, m’=(z — 1) + 1 = z giving (13}.

It is now possible to determine, for any positive integer V/, exactly which Wythoff pair generates the /-sequence in
which that & appears, as well as the location of # in that sequence (as is done in [9]).

Examples.
m N =52=Fg+F;+Fs
{so z=4 by (10))
= 4F;+0. Fg
by repeated use of F,p, = Fpy_ g + Frp
= H7(4,0}
by(1)(som=7,p=4,4g=0)
= Hq(12,8)

by (12)—(15) since
m'=z=4, p’ = Hs40) =12 q’ = H3(40) = 8.

That is, ¥ = 52 is the 4t term in the sequence{H(72,8)}generated by the primitive Wythoff pair (12,20) = (ag, bg) :

Ho Hy Hy Hz:Hy Hs Hg H; Hg

0 4 4 8i12 0 32 (52)wm

1

{H(12, 8)}
{4, 0)f
) N = 1000 = Fyg+Fy = Hy11(10,2) = Hg(90, 56),

i.e., 1000 is the 6% term in the sequence generated by the primitive Wythoff pair (90, 146) = (as4, b56 )
Ho Hi Hz Hz H4 Hs:Heg Hy; Hg H9 Hig Hyg
2 10 12 22 34 56: 90 146 236 382 618 (1000

; {H (90,56)}

(H(10,2)}

Example (1) is given by Silber [3]. Comparing his zero-unit notation with our A-notation in relation to canonical
representations, we see that our z is a suggestive symbol as it is also the number of zeros at the right-hand end of the
zero-unit notation for a canonical representation. Checking that (12, 20) and (30, 146) in the examples above are in-
deed primitive Wythoff pairs is straightforward,



1978] WYTHOFF PAIRS 151

ACKNOWLEDGEMENT

Thanks are due to Professor Robert Silber for sending the author preprints of some of his forthcoming articles on
Fibonacci representations, thus making available further information, including references.

REFERENCES

W. W. R. Ball, “Mathematical Recreations and Essays” (revised by H. S. M. Coxeter) Macmillan, 1947.
2. C. L. Bouton, “Nim, a Game with a Complete Mathematical Theory,” Annals of Mathematics, Series 2, Vol. 3,
1902, pp. 35—-39.
3. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., “Fibonacci Representations,’” The Fibonacci Quarterly, Vol. 10,
1972, pp. 1-28.
4, L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., “Addendum to the Paper ‘Fibonacci Representations’,” The Fib—
onacci Quarterly, Vol. 10, 1972, pp. 527-530.
5. H.S.M. Coxeter, “The Golden Section, Phyllotaxis, and Wythoff's Game,” Scripta Mathematica, Vol. 19, 1953,
pp. 135—-143.
6. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
7. A. F. Horadam, “A Generalized Fibonacci Sequence,” American Math. Monthly, Vol. 68 (5), 1961, pp. 455—
459,
8. C. G. Lekkerkerker, “Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci,” Simon
Stevin, Vol. 29, 1951-52, pp. 190-195.
9. R.Silber, “A Fibonacci Property of Wythoff Pairs,"” The Fibonacci Quarterly, Vol. 14, 1976, pp. 380—384.
10. R. Silber, “Wythoff's Nim and Fibonacci Representations,” Preprint (to appear, The Fibonacci Quarterly).
11. W. A. Wythoff, “A Modification of the Game of Nim,” Nieuw Archief voor WisKunde, Vol. 7 (2), 1907, pp.
199-202.

[Continued from page 146.]

-

Yortoiokolol

and that V,, = 2 satisfies

Vit = 2Vt = Vi,
we can rewrite (1.2) as

This suggests the following result for integer sequences.

Conjecture. Let U, with Ugp =0, Uy =1, and Vy, with V=2, V{ = P, be two solutions of

Witz = PWhss + AWy, k=201,
where P and @ are integers with # > 2 and P + @ > 1. We then claim that
2
n n
(3.1) 2 Z U]‘: < Vn( E Uk> n=12-)
k=1 k=1

Remarks. For P =2 and @ =—17, (3.1) gives (1.2). Using double induction, one can prove the conjecture for P+ @
> 3, which leaves the two cases P+ 2 =2and P+ Q = 7 open.
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