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SUMMARY 
The present_paper is a continuation of researches begun by the author in previous publications [3,4, 5] on three 

classes of generalized Bernoulli, Euler, Stirling numbers. And here, of course, will be proved some additional inter-
esting results. 

1. GENERALIZED BERNOULLI, EULER NUMBERS AND POLYNOMIALS 

The generalized Bernoulli, Euler numbers in question, and the related polynomials, are defined by the series 

(1.1) / / -A . - . i - ht 
f(t;h,w) = f = £ Bn;Kw L-, 

(1 + wt)hlw-1 „=0
 n! 

IM\ - / , . ! . . - I - 2h 1+Wtllw ST F *" 
(1.2) ip(t;h,w) — = ^ En^w -j-, 

(1+wt)2hlw + 1 n=0
 n! 

(1.3) F(x,t;h,w) - ht(1+wt)*l» __ £ B (x) t» 
(l+wt)hlw-l ^o n! 

(1.4) <S>(x,t;h,w) = 2h(1+wtjX'W = £ En;KJx) C- , 

where h and w are real parameters. 
These series, for a correct treatment, will be considered in the neighborhood of the origin. 
The explicit expressions of Bn;hfW(x) for n = 0, 7,—,5 are 

B0;h,w(x) = h 
Bl;h,wM = %(2x-h+w), 

B2;h,wM = x(x-h)+1-(h2-W2), 

2_„,2i B3;h,wM = %x(x-h)(2x-h-3w)-1/4w(hz - wz), 

B4;h,wM = x(x-h)(x -2w)(x-h-2w)- ^ (h2 - w2)(h2 - 19w2) 

Bs-h WM = x(x - h)[x3 -%lh +5w)x2 + 1- (h2 +45hw + 110w2)x + ^ h3 - 5-§- hw2 

' ' Z O 0 0 

- 15w3] +1-w(h2 - w2)(h2 - 9w2). 

And these can be deduced by the recurrent relation [4] 
103 
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E (:)(~Wr [1 - 1) „-r-l
B'*>»M = "(-xMn-l. n > 0, 

where (a)0 = 1, (a)r = a(a + 1) - (a+r- 1). 
The explicit expressions of En;^fW(x) for/7 =0, 1, —, 5are 

Eo;h,wM = h, 

Ei;h,wM = 1/2h(2x-h), 

E2;h,w M = hx2 -h(h+ w)x + M 2w, 

E3;h,wM = hx3 - I h(h +2w)x2 +hw(3h +2w)x + 1- h2(h2 - 4w2), 

E4;h,wM = hx4 -2h(h+3w)x3 +hw(9h + 1lw)x2+h(h3 - 11hw2 - 6w3)x 

-3~h2w(h2 -2w2), 

E5;h,wM = hx5 - | h(h + 4w)x4 + 5hw(4h + 7w)x3 + | h(h3 - 21 hw2 - 20w3)x2 

-2hw(5h3 - 25hw2 - 12w3)x- j h2(h4 - 3j h2w2 +24w4). 

And these can be deduced by the recurrent relation [4] 

n-l 
2En;h,w M + Yl ( r) f - ^ ^ M ^ r / M 'X> = 2h(-w)n(-xMn , 

r=0 * ! 

n > 0. For relations with generalized Bernoulli, Euler, polynomials, it is easy to see that generalized Bernoulli, Euler, 
numbers can be derived by the formulas 

"n;h,w = "n;h,w("'t ^n;h,w = * En;h,w/2''2' • 
The first six values of En;^)W are given by 

E();h,w = h, El,h,u> = h(1 -h), 

E2;h,w = h(1-2h)th(h-1)w, 

E3;h,w = h(h - 1)(2h2 +2h- 1)+3h(2h - l)w+2h(1 - h)w2 , 

E4;h,w = M2h- l)(4h2+2h- 1) + 6h(1 - h)(2h2 +2h - 1)w + 11h(l - 2h)w2 + 6h(h - l)w3 , 

Es;h,w = 4h(1-h)(4h4+4h3 -h2 - h - D - 10(8h4 - 4h2 + l)w + 35h(h - 1)(2h2 + 2h - 1)w2 

+ 50h(2h - 1)w3 +24M1 - h)w4. 
Moreover, it will be useful to estimate also the expression 

Fn;h,w = 2nEn;h,wl2(h/2). 

And here, of course, we introduce the particular expressions for n = 0, 1, —,5: 

F0;h,w = h, Fi;hfW = 0, E2;hfW = ~h3, 

F3;h,w = 3h3w, F4;hfW = h3(5h2-llw2), F5;Kw = -50h3w(h2-w2). 

The theory of generalized Bernoulli, Euler, numbers and polynomials was first investigated by R. Lagrange [1 ] , 
L. Tanzi Cattabianchi [2 ] , and later extensively in the author's paper [4 ] . 

If h = 1,w = 0, the numbers Bn.^tWi Enfa,w, and the polynomials Bn;ilw(x)/ En;h)W(x), reduce to the ordinary 
Bernoulli, Euler, numbers and polynomials, generally defined by the generating expansions 

d.5) 7 - - L * » ; 7 - | f | < * i r . 
• * - / n=0 "• 
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0-® - £ - = E En £ , |r| < n/2. 
n=0 e2t+„ 

(1-7) -f^- = E A„W J , IfI <2ir. 
el-1 n=0 "' 

tx (1.8) -f— = J ] fnW £7, |f | < 7T. 
e *7 n=0 

2. GENERALIZED STIRLING NUMBERS 
The ordinary Stirling numbers of the first and second kind snr, Sn)T, are defined by the initial values 

sn,i = (-Ip-^n-D!, sn>n = 1, 

and the recurrences 
5n,r = sn-l,r-l - (n - 1)sn-i>r, 1 < r < fl, 

$n,r = Sn-l,r-l +r^n-l,r> 1 < r < n, 
with 

sn,0 = Of Sn,0 = 0, 
sn,r

 = 0, Sn}T = 0, provided r > n. 

In our paper [3 ] , they have been generalized with the coefficients a(u) satisfying the recurrence 

»($ = a^l,r-l ~ I" + r<u -V- 'J«£ir> J <r<n, 
with 

a$ = 0, a$ = 0 provided r > n . 

And the particular expressions of a$ for/? = 1,2, -,5, r= 1,2, -, 5, are 

a(uj = h a£} = _U/ B(u} = h 

aft = (u)2, aty = -3u, aty = /, 

a$ = -(11)3, aty = u(7u+4), a$ = -6u, afy = 1, 

a(?J = (u)4, a<$uj = -5u(u+1)(3u+2), aty = 5u(5u+2), 

a$ = -JOu, a$ = 1. 

Our paper [3] presents an extensive treatment of the coefficients a^y, and it is interesting to note here that 

(2.1) »W = (~1>nT A x(x)n Provided x = 0, 
(u - 1)rr! u-i 

where A x is the descending difference defined by the relation Axf(x) = f(x + v) - f(x), 

(2.2) aW = (-1)n £ (-1)k(r
k)(ku-k)n , 

n'r (u-1)rr! & {k' 
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(2.3) 

(2.4) 

r=l X ' r 

r=0 

(2.5) aM = . £ snMSk}r(1-u)k-\ 
k=r 

from which 

(2.6) *(1)=snr, 
n,r n>T ' 

(2.7) J i m ^ [<1-ut™a<»>l =Sn>r: 

(2.8) g(0) Jo,r<n, 
n,r l,r - n , 

(2.9) 

(2.10) 

J2) = iivn-r n±[n-l\ 
n,r ' " rj [r- ij ' 

9(-V„ -L.G!f r \ r > n / 2 
n,r pn-r r! \n - r/ 

(2.11) g(y2) = tlJ^r(2n_r_V/,n_y 
n,r 22n-2r (f] _ J}/ \ r-1} 

For references and applications of the coefficients a^/ to the operators satisfying the condition of permutableness 
of the second order, see the more recent our paper [5]. 

3. PARTICULAR EXPANSIONS. nth DERIVATIVE OF 

y(t)= (f+wtjU»Ht w h e r e 72 = _7 

(1 + wt)hlw-i 

From (1.5), placing to the left member the term 1, -t/2 under the summation sign of the right member, we find, 
as it is well known, the expansion 

°° 2n+l 
(3.1) tanr = £ (~1)n22n+2(22n+2 - l)B2n+2 — , \t\ < TT/2. 

n=0 (2n+2)! 
Now, an expansion analogous to (3.1) will be derived from (1.1), proceeding similarly. First of all we have 

J£- 1 + 1/2(h-w)t = 1~ -(2ht + [(h-w)t-2][(l + wt)hlw - 1]) 
(1 + wt)hlw-1 2[(l + wt)hlw -1] 

oo 

- V R , t' 
l^t Dr;h,w ~f -
r=2 

At once, changing at first t with 4t, w with w/4, and after t with 2t, w with w/2, we obtain the expansions 
1— (8ht + [4ht-wt-2][(1+wt)4hlw -1]) 

2[(1+wt)4hlw -1] 

= JL* 2 rBr;h)W/4 -f ,. 
r=2 
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7 
2[(1 + wt)2hlw - 1] 

from which it follows that 

(4ht + [2ht -wt- 2][(1 + wt)2hlw -1]) =YJ 2YBr;h,wl2 j , , 
r=2 

tr 

] T (2 rBr;k}Wi4-2rBr;h,wl2) -. 
1 

r=2 r! 2[(1+wt) 4hlw i] 
(8ht + [4ht -wt- 2][(1 + wt)4h,w - 1] 

\2hlw -4htf(1 + wt)zniw + 1] - [2ht-wt-2][(1 + wt)4hlw - 1]) 

_ht[(l+wt)2hlw-1]2 _ht[(1+wt)2hlw-1] 

,4h/w_1 (1 + wt)2hlw + 1 

(3.2) 
i2h/w +n+l h[(1 + WtrHIW - 1] _ v . 0n+2nn+2n n . t" 

(l+wt)2hlw + 1 £b ( 2}' 
Moreover by (1.4), replacing x by h/2, w by w/2, t by 2t, we obtain the other expansion 

(3.3) 

and since 

2h(1 + wt) 

(1 + wt) 
' ^ — = Z 2nEn.M2(h/2) *-, 
2hlw , - " ' ' ' n! 

^ I n=0 

h_ . (1 + wt)2hlw -1 + 2h(l+wt)hlw
 = h[(1 + wt)hlw +i]2 

<+wt)2hlw + J] 

(1 + wt)hlw+i 

a+wt)hlw-i' 

' a+wt)2hlw + i d+wt)2hlw + i i[a+wt)2hlw+ 1] 
_h (1 + wt)hlw+i 

we deduce thus the interesting expansion 

(3.4) h (1+wt)hl"+i= £ 2-^i(2n+2Bn+2;Kwl4-Bn+2;h>wl2) -J^r- + £ 2nEn;h}Wl2(h/2) f" 
1 (1 + wt)h/w-i „=0 ' (n+2)l „=o "' 

After this expansion and for the following, it will be to estimate t h e n * derivative of 

y(t) (1+wt)hlw+i 

(1+wt)hlw -i 

Now we consider two continuous and derivable functions y = f(uj, u = <p(t), and the formula for derivatives of a com-
posite function 

&.= £ till . &. £ (-1)k[ 
dtn r=l r! dur k=l 

dtn 

With the assumption 

y = M = —.+1. u = <p(f) = (1 + wt)hlw, 
u-1 

we arrive at 

dtn 
r=l L 

f-VT 2i(-1)rr! 
r! (u-i) 

2U-W)n y 
(1+wt)n ~i [(1 

i (-vk(r
ky-k(-wr(d£)nuk-n 

(1+Wt)rhlw y* /_ ;|fc/r\/z*A\ 
+ wt)hlw-i]r+1 t l \ k l \ w I 

-nw/h 
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Whence, by (2.2), we deduce, for n > Q, 

dn (l + wt)hlw+i (3.5) 
dtn (1+wt)hlw-1 

_ 2iwn n (-1)rr!hr
 3(l-hM (l+wt)rhlw 

(1 + Wt)n
 r=l Wr H'r [(1 + Wt)hlw - / / r+1 

Successively, putting t = 0, we have 

' dn (1+wt)h/w + j 

dtn (1+wt)hlw-i t=0 

2iwn T (-1)rr!hT. a(i-u*>) L 
~ ...r n>r l, ; r=l W (1-i) r+1 

Moreover it is 
-~^ = l±l = J- (cos TT/4+I slnn/4), / - / 2 ^ 

1 

(1-i)r+l 2(r+1)'2 
/cos (r + 1h/4 +i$\n(r+ 1h/4] 

1 
2(f+l)l2 

/cos (r - 1)TT/4 + i sin (r - 1h/4] , 

and, however, it follows that (n > 0) 

' dn (1+wt)hlw + j~ (3.6) 
dtn (1+wt)hlw -i t=o 

\r-l„iur = wnT LdllMhl. a(*-U»)fm (r - 1h/4 +i sin (r - 1h/4] . 
£ 2(r~1)l2wr nj 

4. FORMULAS FOR THE GENERALIZED BERNOULLI, EULER, STIRLING NUMBERS 
We now, by (3.6), deduce the expansion of the function y(t) into a series of powers of t, 

vM = £ 
n=0 

dnv(t) 

dtn n! 
J t=0 

'" * E (MfE ('V r9hT at1*1**/cos (r - Vn/4 + isin (r- lh/4]. 
£i n! 7^1 2(r-1)l2wr n'r 

Hence, comparing with (3.4), we obtain the expansion 
oo 

E nn+1 /0n+l „ D j tn 

* [Z Bn+i;h,w/4 - 0n+l;h,w/2/ /^ + jjf 
n=l 

oo 

n=l 

+ S ^ £ H/.'fr - i ^ / c o i (r - th/4 + i sin (r - 1fn/4j. 
~ n! *-J o(r-l) 2 r n>r 

n=l r=l * W 
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from which, separating real and imaginary parts, and equating the coefficients of tn on both sides, we establish the 
interesting formulas 

W.1) 2n (2n Bn+i;h,w/4-Bn+l;h,w/2) 

_- (n + 1) f (-irhih^w™ a(i-hi»)C0S(r_Vn/4f 

fr\ 2(r-1>12 

(4.2) 2nEn.h>w/2(h/2) 

__ £ M/ -W+V- a(M) sjn (r _ 1h/ 
£ 2(

r-^12 

both for n > 0. They"realize the principal objective of the present paper. 

5. PARTICULAR FORMULAS 

In this section we shall indicate some special cases of (4.1), (4.2). 
(a) If h = l,w = 0, the generalized numbers Bn;h>w, En;h)U), reduce to the ordinary Bernoulli, Euler, numbers, 

while 
lim [wn-*J1-llw>] =Snr. 

u> -» oo n,r n>' 
Moreover, it isB2n+i = 0 for/7 >®,E2n+i = 0. Consequently, by (4.1), (4.2), we deduce the formulas 

o2n+ll02n+2 f J
 2n+1 / 7jr-ir/ 

(5.1) ^ {2
n + 1 ~1j B2n+2 = E { y ' l $2n+i,r™s(r- Vir/4, 

n + 1 ^ 2(r~1)12 

2n+l 1 

(5.2) Y. t 1"-$2n+l,r^(r-1fr/4 = 0, 

(5.3) 
2n , r_t 

E ' ) r j l S2n,r COS fr- 1h/4 = 0, n > 0, 

(5.4) E2n = £ { y ~ r . l S2n,r sin (r - 1h/4, n > 0. 
% 2(r-V12 

Equations (5.1) and (5.4) are two additional formulas concerning ordinary Bernoulli, Euler, Stirling numbers. 
(b) \\w = h, we have (2.8) 

(l-hlw) = fo,r < n, 
n,r | l,r = n , 

therefore, (4.1) reduces to 

(5.5) 2n+1(2n+1Bn+1.M4 - Bn+1;hih,2) = (n + 1!!(-^+1 cos (n - 1h/4. 
2(n~lJ/2 

Moreover, by the recurrent relation for Bn;ilfil/2, it follows that 

o nh D 

®n;h,h/2 ~J °n-l;h,h/2 > 

from which 
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n!(-h)n 

n2n 
(5-6) Bn;hfh/2 

Consequently, by (5.5) we deduce 

(5.7) Bn.h>hi4=!±!t!>}l[1+2(n+2)l2
%\n(nT</4)]. 

2 

This formula can be derived by the recurrent relation 
P , 1 , 3nh n , n(n - 1)h2

 D Bn;h,h/4 + -J- Bn-l;h,h/4 + JQ-1— Bn-2;h,hl4 

. n(n- l)(n-2)h3
 D _ n n ^ n 

+ Jjtf " Bn-3;h,hl4 = 0, n > Q, 
easily transformable in other forms to constant coefficients. 

(c) \\w = -h, we have (2.9) 
Jl-h/w) = / 7)n-r n[(n- 1\ 
n,r f " rf \r - 1 j ' 

and (4.1) reduces to 

(5-8) 2n+ (2n+ Bn+1;pl-h/4-Bn+1;h)-h/2) 
n (_ijr-l(n-l\ 

= (n + 1)!hn+l Y / V-n cos (r - 1h/4, n > 0. 

Moreover, it is [4] 

"n;h,~w = i ' / "n ;h,w > 
and comparing (5.5) with (5.8) we have the identity, for A? > 0, 

(5.9) £ '(-Vr-1(?z})2(n~r),2n*(r- 1>«/4 = cos^~ ^/*-
r=l 

Putting into (4.2) at first w = h and after w = ~h, and remembering that [4] 
En;h,-u> (h/2) = (- VnEn;h>w(h/2) , 

we prove the identity 
n 

(5.10) J^ (-1)rfrz})2(n,'r),2*to(r- Dn/4 = m{n-1h/4, 
r=2 VI 

for/7 > 1. 
(d) \\w = h/2, we have (2.10) 

a(l-hlw) = -J-.nJt r \ r > n / 2 

nyr 2n_r r! \n-rj > 

and (4.1) becomes 

(5.1D 2n+1(2n+1Bn+1;hihi8 ~ Bn+1;h}hi4) 

(n + l)!h n+l 
?2n 2M r~l2 

E (-I?-1 {„ I r) 2(Jr+1)'2 cos (r - 1h/4. 

Consequently, returning to (5.7), it follows 
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(5.12) 22»+2Bn+uh>m = (n+J''h
?

n+1 ((-Vn+ln+2W2vn(n+1h/4] 
n2n+2 \ 

+ £ <~irl L - r) 2(3r+5)'2 C0S (r ~ 7,7t/4 ) • 
r>n/2 V 

(e) l f iv = ̂ ,wehave (2.11) 
3(l-hlw) _ (-1)n~r (2n-r-1)! (n-l\ 

n,r 22n~2r ' (n - l)f ' [ r - l j ' 

Then (4.1), by (5.6) and the relation 
Bn;h,h = 0 for n > 0, 

reduces to the identity, for n > 0, 

n 

(5.13) £ r!(2n-r- 1).'('" z})2(r+1),2n* <r ~ *>«/* = 2n(n~1)!n!. 
r=l \ r I 

6. A DERIVATIVE FORMULA 
Putting 

P0;h,v> = ' / 

2n+l +i j2n 

Pn;h,w = fn + jjh ' (2n Bn+l;h)w/4-Bn+l;h,w/2)-h y ~ Enfrtwl2(h/2), n > 0, 

the expansion (3.4) can be written in the form 

(1+Wt)hlw-i n=0 "' 
Moreover, it is not difficult to show that the function Fit) satisfies the functional equation 

(6.2) 2Jl+wtL.dm=1-F2(t)i 

h at 
from which the recurrent relation follows, 

n 
(6.3) 2Pn+1;Kw+2nwPn;Kw+h £ (")Pr;h,wPn-r;h,w = 0, n > 0. 

r=0 V ' 

If h = 1, w = Of we have the interesting connections with the ordinary Bernoulli, Euler numbers 
n2n+l /p2n+2 _ *i 

(6.4) P2n;l,0 ^ f'E2n> P2n+l;l,0 = -J^pj &2n+2 > 

and from (6.3) we obtain, in conclusion, the special formulas 

feci ^ I 2 n \ 22n(22r+2 - 7)(22"-2r- 1) n o v (2n\F F 
( 6 - 5 ) L, \2r + l) (r+t)(n-r) B2r+2B2n-2r-L (2r)E2rE2n-2r 

r=0 r=0 
j2n+2 /n2n+2 

+ Z
 n'2+J = ^ B2n+2 = 0, n > 0, 
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(6.6) E2n+2 = £ ( £ ; ] ) 2 [\-2 ' B2n+2E2n-2r, n>0. 
r=0 
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EXPANSION 

PAMILLA GRAVES SMITH 
1609 Main Street, Evanston, Wyoming 82930 

As every science, save one, is modified and cast aside, 
While mathematics only is built upon and grows, 
So, too, my life's whole whims and whimsies pied 
See their demise, while my regard for you goes 
On. Like the Sieve of Eratosthenes, you sift 
My drifting days and sort the prime. 

As determinants reflect a change, I mirror-image you 
And, palindromic, backward-forward go, from autumn into spring. 
Approaching the limit of joy, you bring a rate of change 
Which grows in my heart proportionate to you. Your range 
Is my domain. By you, my worthiness a proof shows, 
As solid as geometry, as crystalline as snows, 
As coming-now as spring. 

I am subset of you. 
Happily, with you no negative numbers can deride 
My existence, that foolish enterprise of sensibility; 
Instead, a proper fraction of civility 
Is mine. By power of example, exponent of grace, 
You multiply and lace my life with life. The race 
Is mine! Cantor-like you lift 
Me to infinity sublime 
And grant me a number prime. 


