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1. INTRODUCTION

Put
— L 2 = chnx
1 - 7@: - X n=0
and
Caly) = Y Cp, v (n=0,1,2, ...
k=0
By (1.1),
] 00 R j o0 j j__s j+s 0 " n—
Cp X = x?(k + x2)Y = ( )k x = x jz:(
nZ; " J=ZO ,]=OSZO s 'r; 2s<n s
so that

DM O

2s<n

Q
=
1

Since ¢,, is a polynomial in k of degree n, it follows that

Y‘n‘(y)
Cn(y) = ————— (n=0,1,2, ...,
(1 - y)n+1

where »r,(y) is a polynomial in y of degree m. Moreover, since
Cyne1 = Key n +Cp 1
it follows from (1.2) that
Cpyr(x) = Z?:(kck,n + ey -xk
This gives o
Cre1(x) = Ci(x) + Cp-1() (n>1).

Hence, by (1.4),
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7, @) = (n+)ar, @) +x (1 -x)r)(©) + (1 -x)2r _ () n>1) (1.6)
with ro(x) = r;(x) = 1.
If we put
r, (x) = iRn,kxk, (1.7)
k=0

then, by (1.6), we get the recurrence
(m -k + 2Ry 1 + KBy ¥ Ryoyx =~ 2B, 1,51 + Bpogi_ge (1.8)

By means of (1.8) the following table is easily computed.

> K 0 1 2 3 4 5 6 7
0 1

1 e 1

2 1 -1 2

3 . 3 . 3

4 1 . 14 i 5

5 . 22 60 22 8

6 1 6 99 244 279 78 13

7 . 21 240 1251 | 2016 | 1251 240 21

It follows from (1.6) that

Rn+l,n+l = Rn,n + Rn—l,n-l'

Hence, since R, , = F =1,

1,1
Rpn = Frus n=0,1,2, ...). (1.9)

Hoggatt and Bicknell [2] have conjectured that
Bonsn, i = Bone1,on-k+2 1<k<2n+1). (1.10)

We shall prove that this is indeed true and that

2n+1
Bpponarer + GO (THY) = B, 1 <k<om. (1.11)

The proof of (1.10) and (1.11) makes use of the relatiomship of », (x) to the
polynomial A4, (x) defined by [1], [3, Ch. 2]

1 -z
T = ! +ZA @ (1.12)
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The relation in question is

n-k
r@ =Y ("0 - 2%, @ (1.13)
2k<n
with 4,(x) = 1. The polynomial 4,(x) is of degree n:
n
An(x) = ) Ayt n>1), (1.14)
k=1
where the 4, ; are the Eulerian numbers. Since
A,(x) = x””An(%), (1.15)

it is easily seen that (1.10) and (1.11) are implied by (1.13).

It seems difficult to find a simple explicit formula for R, ; or a simple
generating function for r,(x). An explicit formula for R, , is given in (2.11).
As for a generating function, we show that

o

Zrn(x)% =S a4,@75 (@ - 2@ - 2 e, (1.16)
n=0 n=0
where
fu(a) = %22“”. (1.17)
k=0
Moreover

fn(2) = P,(2) cosh 3 + §,(2) sinh z, (1.18)

where P, (2), §,(3) are polynomials of degree n, n-1, respectively, that are
given explicitly below.

While (1.16) is not a very satisfactory generating function, the explicit
result (1.18) for fn(2) seems of some interest. It is reminiscent of the
like result concerning Bessel functions of order half an integer [4, p. 52].

2. PROOF OF (1.10) AND (1.11)
By (1.2) and (1.3) we have

C,(x) = ixkz (ﬂ;vS)kn—Zs - Z (n;S);Zokn_zsxk'

k=0 2s<n 2s<n

Since [3, p. 39]

it follows that
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and therefore

2@ =y ("% - 4, @,

28<n

Thus we have proved (1.13).

(2.

SO

On

SO

Note that by (1.7) and (1.14), (2.1) yields

D DD NEN Gl PO

28<n j=0

In the next place, since

4,6 = 2", (L) (n > 0),
1) gives
1 n-s8 2 - 1
xn+1r, (E) = Z ( s >(1 _ x) 8 g Zs+1An_28(5).
2s<n
now consider separately the cases 7 odd and 7 even.

Replacing 7n by 2n + 1, (2.3) becomes

x2n+zr,2n+l(%> = Z (”;S)(l -2 A, (@),
3

s§<n

that

2n+2 1
I§n+1(x) x 12n+1<x>'

the other hand

n-
ranan(—i') - Z (2713— S) (1 = z)? gon-2e+ 1A2n—23 (_i-?) +x2(l - 22"
8=0
(20
-5 .
=2 (A - @ A @) - 4= P

s=0

that

1

r, (@) = r2”+1r2n<5) + (1 - x)?n+l,

By (2.4) and (1.7) it follows at once that

Rons1,k = Bons1,2n-x+2 1<k<2n+ 1.

Similarly, by (2.5),

2n+1

2n 2N

- 2n+1
ZRZn’kxk = Z}?zn’kxzn K+l (-1) ( % )xk,
k=0 k=0

k=0

which gives
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Bopx = Bonon-x+r ¥+ ("l)k(znifl) 1<k<22m),
as well as
Ryn,o =1 (n=0,1, 2, ...).
The companion formula
Rons1,0 =0 (n=20,1, 2, ...)

is implied by (2.4).
Clearly, by (1.9) and (2.6),

Ronier,; = Fonso (n=20,1, 2, ...)
while, by (2.7),
Ron,1 = Fopyy = (20 + 1) (n=0,1, 2,
Since

1
A,(y) =y - D a0n,
i=0
where, as usual,

Aom = i(-l)j“s(g)sn = j1S(n, §),
=0

where S(n, J) is a Stirling number of the second kind, (2.1) implies

=) (n;s)(l - x)*° im - 1)t mipdenre
i=0

il

r, (x)
2k<n

mz (T’L;S)n-zzs(x - l)ﬂ‘jA«jOn-—2s-
=0

i
28<n

Hence

Rn,k

[

2s5<n

P
It

n, (2.12) reduces to

n-—38
Ry, = Z( s ):Fnﬂ.

2% n

For example, for

3. GENERATING FUNCTIONS

S (730) e ()
i=0

[ JUNE

(2.7

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

To obtain a generating function for r,(x), we again make use of (2.1).

Thus
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If

we

SO

wh

Wi

Zr (x) an Z(n k) - &) 2 Ao ()

2k<n

n+2k

- Z > (1 ot - 9% .
k=0 n=0

we put
£, (2) = io——————k!(é;f);)! CRAR ————((Zkkil:), Zetn, (3.1)
get
i:rn(x)— —ZA @ f, (1 - 2)2)@ - z)7"z" (3.2)
=0
Clearly

B ® ZZk S 2k + 2 Zk 1_ 2k+1
Folz) = ;(zk)s’ 2E = 2 e s T ' ZZ(zk)' +Z [
that

fo(8) = cosh 3, 2fl(z) = 3z cosh 2z + sinh 2. (3.3)

For n = 2 we get

Lf, (2) = N4k + 1) (k+2) awvz o N (2K + 1) 2k + 2) + 3(2K + 2) a2

2k + 2)! — (2k + 2)!

ich reduces to
bfy(3) = 22 cosh z + 32 sinh z. (3.4)
th a little more computation we find that
8f3(3) = (8% + 322) cosh z + (62% - 3) sinh z. (3.5)
These special results suggest that generally

2"f,(2) = P,(3) cosh z + @,(2) sinh z, (3.6)

where P, (2), &,(8) are polynomials in z of degree n, n-1, respectively. We
shall show that this is indeed the case and evaluate P, (2), 4,(2).

If we put

S5,(2) =P, (2) +9,(), T,(2) = P,(3) - @,(3), 3.7

then (3.6) becomes
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[

2", (2) = 5(3,1(2)82 + T,(z)e?).
By (3.1) we have

2" (k + 1),
2"f, (3) Z 2k ¥ )1 A

This suggests that we put

n
2 (x4 1), =Y a4y Qat G+ 1), s,

j=

[JUNE

(3.8)

(3.9)

(3.10)

where the a,; are independent of x. Clearly the aj; are uniquely determined

by (3.10). Indeed, rewriting (3.10) in the form
1 £ x
n _ - 3 i
2 <—2—(x - n) + l>n = Z(n J)!a”J(n—j>’
i=0
it is evident, by finite differences, that

Gnmeg = Z( ' (D)5 -+ 1),
= F-lri:(—l)j_s(‘g)(s + ) (s+n-=-2) «+- (s -n+2).
§=0

Substituting from (3.10) in (3.9) we get

2. 2k+n

Z”fn (z) = mza”j @k + 4+ 1)
0

S

- 22k+'j

= anjz”"7 ST
= k=o(2k + Jg)!
© 2k =1 a2t
- Lo 2] 2 _ 2
An, 258 {2:(270! Z (Zt)!}
2j<n k=0 t=0

J-1

2k + 1 2¢+1
_ 1 2
+ Za" 2J+1z” 25 - {Z(2k+l)' ;}(2k+l)!

2j<n

E: n-2; 2: n-2j-1 g3
Ap,o5 8777 cosh z + A, 541877 sinh 3

2j<n 2j<n

n-2j-2t an-2j +2t

_Z Za”'zJ 2 28)! _Z Zan 27 +1 (21: Y

2j<n t<j 2j<n t<g

(3.11)

|

(3.12)
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Now
zn—2j+2t Zn—2j+2t
Z Zan-zj T @n,25+1 ]
_ Zzn_zt Z ‘an,zj N 'an.2j+1
(24 - 2¢)! (23 - 2t + 1)!
<2t<n 2t<j<n
= gn-2t 'a”’j
g - 2e)°
0<2t<n 2t<g<n
By (3.11)
Clnj
G - 2¢)!
2t<j<n

n-g .
= Z (j_Zt)}(n_j)!Z(—l)"—J_S(n;J>(s+n)(s+n—2) e (8=-n+2)
2t< g <n 8=0
n-2t 1 J

ST (I s+ (s 4n=2) or (8 -n+2)
et jl(n=-2t-4)! £ (s)

J g
= __}__”it(n—Zt)(s_i_n)(s_'_n_z) e (ot nit(_l)J-S(n—Zt—s
S (n-25)1 &4\ s 2 it )

The inner sum vanishes unless n = 2t + s. Since n > 2¢, the double sum must
vanish. Therefore, (3.12) reduces to

2"f (3) = Zan,zjz"—zi cosh z + Zan,zwz”—%’-l sinh z. (3.13)

25<n 25<n

Comparing (3.13) with (3.6), it is evident that

P (2) = Z U, 2 an-24
2j<n
(3.14)
Qn(z) = Zaﬂ-2j+ gn=2d-1
2j<n

Hence, as asserted above, P,(2), @,(3) are polynomials of degree n, n - 1,
respectively. It is in fact necessary to verify that q, , # 0, a,,, # 0.
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By (3.7) and (3.14) we have

§,(2) =D @, ;a"9, T,(2) = D (-1) a,, ;2" (3.15)

ji=0 Jj=0

L. ANOTHER EXPLICIT FORMULA

While we have found a,; explicitly in (3.11), we shall now obtain another
formula that exhibits a,; as a polynomial in 7 of degree 2j. To begin with
we have, by (3.11),

e®S,(z) = ZOZkZU(—-—jJTan'n—j '
J

k=
J

2| ok & k Y
= ;%Zo(j)zo(-l)g (‘;)(S+n) (s+m=2) +o- (8-n+2)

1
J= 5=

k=0 " g=0 j=¢

It follows that

o

Uy (2) = e*5,(z) = ErmGrn=2) o0 (kontd) op .1
k=0 :
Then
2U)(z) - nUy,(2) =Z (k+n)(k+n;'2) e (k=) g
k=0 :
(zUJ(z) _ nUn(z)) =2 (k+n+1)(k+n;’1) e (k=n1) Ut (a).

k=0
Carrying out the differentiation this reduces to
Sp+1(8) = 380(z) + 2z-n+1)S}(8) + (3-n+1)5,(2). (4.2)
Comparing coefficients we get
Ape1,5 = Ang + M=27+3)a,, ;.. - G-2)(n-g+2a,,;_,. (4.3)
Hence, for j = 0, we get

Ap,o = 1. (4.4)

For j = 1, (4.3) becomes

Aps1,1 = Anr + (0 + L)ay,,,
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which gives
n+1
an = ("3 (4.5)
For n = 2, (4.3) reduces to

Ays1,2 = App + (n = Da,,,

which gives

+1
a,, = 3"} ) (4.6)
With a little more computation we get
n+1 n+1l
aps = 15( . ) - 3( ; ) 4.7)
2, = 105(" 5 1) - as("E ) (4.8)
n 8 6
Caec.e7.0fTL)y _ n+1l n+1l
Gys = 3°5¢7 9(10) 630(8)+45(6). (4.9)
These special results suggest that generally
+1
Tny= ("l)sc-fS(zn‘—ZS)' (4.10)
2s<g J
Indeed assuming that (4.10) holds up to J, it follows from (4.3) that
an+l,j+l— an,j=l
_ . s n+1 . _ = _13\S .. ( n+1
= (=244 3 (07 () G0 -4 D D ey (0" 50 o)
2s< g 2s<j-1

Z(_l)s(Z?fés) {(”‘zj'*'l)cjs + (j'l)(n'j"'l)cj—l,s—l}

28<J

178 A n+1 )
E : D c=7+1,S(2€7'—2s+1

285 g+1

provided
(n-27+28+1)cj 1,0 = (25 - 25+1) ((n-2j+1)ej, @G- M-F+Dejo1,-1)-

This gives

o =i _(J-1)1(2] - 28)!
J» 8 sl(g-8)1(j-2s-1)!"

(4.11)
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Thus (4.10) becomes

- i @G-D1@j-28)! (n+l
amj"QE;Z suj—s)uj—zs—l)!vj-23> (4.12)

NI| O 1 2 3 b 5
0 1
1 1 1
an,j: 2 1 3
3 1 6 3 -3
L 1 10 15 | -15
5 1 15 45 | -30 | -45 | +45
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