A RECURRENCE SUGGESTED BY A COMBINATORIAL PROBLEM

LEONARD CARLITZ

Duke University, Durham, North Carolina 27706

SECTION 1

Recurrences of the following kind occur in connection with a certain combinatorial problem (see §5 below). Let e_1 , ..., e_n be non-negative integers and q a parameter. Consider the recurrence

$$F(e_1, \ldots, e_n) = \sum_{j=1}^n q^{jN} F(e_1 - \delta_{1j}, \ldots, e_n - \delta_{nj}), \qquad (1.1)$$

where

$$N = e_1 + \cdots + e_n, \tag{1.2}$$

$$\delta_{i,j} = \begin{cases} 1 & (i = j) \\ 0 & (i \neq j), \end{cases}$$
 (1.3)

$$F(0, \ldots, o) = 1$$
 (1.4)

and $F(e_1, \ldots, e_n) = 0$ if any $e_i < 0$. Note that, for q = 1, (1.1) reduces to

$$F(e_1, \ldots, e_n) = \sum_{j=1}^n F(e_1 - \delta_{1j}, \ldots, e_n - \delta_{nj})$$

and $F(e_1, \ldots, e_n)$ becomes the multinomial coefficient

$$\frac{(e_1 + e_2 + \cdots + e_n)!}{e_1!e_2! \dots e_n!}.$$

If we put

$$e = (e_1, \ldots, e_n), \quad \delta_j = (\delta_{1j}, \ldots, \delta_{nj}),$$
 (1.5)

then (1.1) becomes

$$F(\boldsymbol{e}) = \sum_{j=1}^{n} q^{jN} F(\boldsymbol{e} - \delta_{j}). \tag{1.6}$$

For n = 1, the recurrence (1.1) is simply

$$F(N) = q^N F(N-1), \quad F(0) = 1.$$
 (1.7)

The solution of (1.7) is immediate, namely

$$F(N) = q^{\frac{1}{2}N(N+1)}. {(1.8)}$$

For n = 2, the situation is less simple. We take

$$F(e_1, e_2) = q^N F(e_1 - 1, e_2) + q^{2N} F(e_1, e_2) (N = e_1 + e_2).$$
 (1.9)

Iteration of (1.9) gives

$$\begin{split} F(e_1,\ e_2) &= q^{2N-1}F(e_1-2,\ e_2) + q^{3N-2}(1+q)F(e_1-1,\ e_2-1) + q^{4N-2}F(e_1,\ e_2-2) \\ &= q^{3N-3}F(e_1-3,\ e_2) + q^{4N-5}(1+q+q^2)F(e_1-3,\ e_2-1) \\ &+ q^{5N-6}(1+q+q^2)F(e_1-1,\ e_2-2) + q^{6N-6}F(e_1,\ e_2-3). \end{split}$$

It is helpful to isolate the exponents as indicated in the following table.

r	0	1	2	3	4	5
0	1					
1	N	2 <i>N</i>				
2	2 <i>N</i> - 1	3№ - 2	4N - 2			
3	3N - 3	4N - 5	5 <i>N</i> - 6	6N - 6		
4	4N - 6	5 <i>N</i> - 9	6N - 11	7 <i>N</i> − 12	8 <i>N</i> - 12	
5	5 <i>N</i> - 10	6N - 14	7N - 17	8 <i>N</i> - 19	9N - 20	10N - 20

The special results above suggest that generally, for $m \geq 0$,

$$F(e_1, e_2) = \sum_{r+s=m} {m \brack r} q^{(m+r)N-m(m-1)+\frac{1}{2}s(s-1)} F(e_1 - s, e_2 - r), \qquad (1.10)$$

where

It follows from (1.11) that

For m=1, (1.10) reduces to (1.9). Assume that (1.10) holds for all $m \leq M$. Then by (1.9)

$$\begin{split} F(e_1,\ e_2) &= \sum_{r+s=M} \begin{bmatrix} M \\ r \end{bmatrix} q^{(M+r)N-M(M-1)+\frac{1}{2}s(s-1)} F(e_1-s,\ e_2-r) \\ &= \sum_{r+s=M} \begin{bmatrix} M \\ r \end{bmatrix} q^{(M+r)N-M(M-1)+\frac{1}{2}s(s-1)} \left\{ q^{N-r-s}F(e_1-s-1,\ e_2-r) \\ &+ q^{2(N-r-s)}F(e_1-s,\ e_2-r-1) \right\} \\ &= \sum_{r+s=M} \left\{ \begin{bmatrix} M \\ r \end{bmatrix} q^{(M+r+1)N-M^2+\frac{1}{2}s(s-1)} F(e_1-s-1,\ e_2-r) \\ &+ \begin{bmatrix} M \\ r \end{bmatrix} q^{(M+r+2)N-M(M+1)+\frac{1}{2}s(s-1)} F(e_1-s,\ e_2-r-1) \right\} \\ &= \sum_{r+s=M+1} \left\{ \begin{bmatrix} M \\ r \end{bmatrix} q^{(M+r+1)N-M^2+\frac{1}{2}(s-1)(s-2)} \\ &+ \begin{bmatrix} M \\ r-1 \end{bmatrix} q^{(M+r+1)N-M(M+1)+\frac{1}{2}s(s-1)} F(e_1-s,\ e_2-r) \right\} \\ &= \sum_{r+s=M+1} q^{(M+r+1)N-M(M+1)+\frac{1}{2}s(s-1)} \left\{ \begin{bmatrix} M \\ r \end{bmatrix} q^{M-s+1} \\ &+ \begin{bmatrix} M \\ r-1 \end{bmatrix} \right\} F(e_1-s,\ e_2-r) \\ &= \sum_{r+s=M+1} \begin{bmatrix} M+1 \\ r \end{bmatrix} q^{(M+r+1)N-M(M+1)+\frac{1}{2}s(s-1)} F(e_1-s,\ e_2-r) \,, \end{split}$$

by (1.12). Thus (1.10) holds for M+1 and therefore for all $m\geq 0$. For m=N, (1.10) reduces to

$$F(s, r) = q^{(2r+s)(r+s)-(r+s)(r+s-1)+\frac{1}{2}s(s-1)} \begin{bmatrix} r+s \\ r \end{bmatrix}.$$

Simplifying and interchanging p and s, we get

$$F(r, s) = q^{\frac{1}{2}r(r-1) + (r+s)(s+1)} {r+s \choose r}.$$
 (1.13)

By a familiar identity, (1.13) gives

$$\sum_{r=0}^{m} q^{-m(m-r+1)} F(r, m-r) x^{r} = (1+x)(1+qx) \cdots (1+q^{m-1}x).$$
 (1.14)

SECTION 2

The case n = 3 of (1.1) is more difficult. We have

$$F(e_1, e_2, e_3) = q^N F(e_1 - 1, e_2, e_3) + q^{2N} F(e_1, e_2 - 1, e_3) + q^{3N} F(e_1, e_2, e_3 - 1).$$
(2.1)

Iteration gives

$$\begin{split} F(e_1,\ e_2,\ e_3) &= q^N \Big(q^{N-1} F(e_1-2,\ e_2,\ e_3) + q^{2N-2} F(e_1-1,\ e_2-1,\ e_3) \\ &+ q^{3N-3} F(e_1-1,\ e_2,\ e_3-1) \Big) + q^{2N} \Big(q^{N-1} F(e_1-1,\ e_2-1,\ e_3) \\ &+ q^{2N-2} F(e_1,\ e_2-2,\ e_3) + q^{3N-3} F(e_1,\ e_2-1,\ e_3-1) \Big) \\ &+ q^{3N} \Big(q^{N-1} F(e_1-1,\ e_2,\ e_3-1) + q^{2N-2} F(e_1,\ e_2-1,\ e_3-1) \\ &+ q^{3N-3} F(e_1,\ e_2,\ e_3-2) \Big) \\ &= q^{2N-1} F(e_1-2,\ e_2,\ e_3) + q^{3N-2} (1+q) F(e_1-1,\ e_2-1,\ e_3) \\ &+ q^{4N-3} (1+q) F(e_1-1,\ e_2,\ e_3-1) + q^{4N-2} F(e_1,\ e_2-2,\ e_3) \\ &+ q^{5N-3} (1+q) F(e_1,\ e_2-1,\ e_3-1) + q^{6N-3} F(e_1,\ e_2,\ e_3-2). \end{split}$$

A second iteration gives

$$\begin{split} F(e_1,\ e_2,\ e_3) &= q^{3N-3}F(e_1-3,\ e_2,\ e_3) + q^{6N-6}F(e_1,\ e_2-3,\ e_3) \\ &+ q^{9N-9}F(e_1,\ e_2,\ e_3-3) \\ &+ q^{6N-8}(1+2q+2q^3+q^4)F(e_1-1,\ e_2-1,\ e_3-1) \\ &+ q^{4N-5}(1+q+q^2)F(e_1-2,\ e_2-1,\ e_3) \\ &+ q^{5N-7}(1+q^2+q^4)F(e_1-2,\ e_2,\ e_3-1) \\ &+ q^{5N-6}(1+q^2)F(e_1-1,\ e_2-2,\ e_3) \\ &+ q^{7N-9}(1+q^2+q^4)F(e_1-1,\ e_2,\ e_3-2) \\ &+ q^{7N-8}(1+q+q^2)F(e_1,\ e_2-2,\ e_3-1) \\ &+ q^{8N-9}(1+q+q^2)F(e_1,\ e_2-1,\ e_3-2). \end{split}$$

It follows from the above that

$$F(1, 0, 0) = q, F(0, 1, 0) = q^{2}, F(0, 0, 1) = q^{3},$$

$$\begin{cases} F(2, 0, 0) = q^{3}, F(0, 2, 0) = q^{6}, F(0, 0, 2) = q^{9} \\ F(1, 1, 0) = q^{4}(1+q), F(1, 0, 1) = q^{5}(1+q^{2}), F(0, 1, 1) = q^{7}(1+q), \end{cases}$$

$$\begin{cases} F(3, 0, 0) = q^{6}, F(0, 3, 0) = q^{12}, F(0, 0, 3) = q^{18} \\ F(2, 1, 0) = q^{7}(1+q+q^{2}), F(2, 0, 1) = q^{8}(1+q^{2}+q^{4}) \\ F(0, 2, 1) = q^{13}(1+q+q^{2}), F(1, 2, 0) = q^{9}(1+q+q^{2}) \\ F(1, 0, 2) = q^{12}(1+q^{2}+q^{4}), F(0, 1, 2) = q^{15}(1+q+q^{2}) \\ F(1, 1, 1) = q^{10}(1+2q+2q^{3}+q^{4}). \end{cases}$$

$$(2.2)$$

It is convenient to write (2.1) in operational form. Define the operators E_1^{-1} , E_2^{-1} , E_3^{-1} by means of

$$E_{1}^{-1}\phi(e_{1}, e_{2}, e_{3}) = \phi(e_{1} - 1, e_{2}, e_{3}), E_{2}^{-1}\phi(e_{1}, e_{2}, e_{3})$$

$$= \phi(e_{1}, e_{2} - 1, e_{3}), E_{3}^{-1}\phi(e_{1}, e_{2}, e_{3}) = \phi(e_{1}, e_{2}, e_{3} - 1)$$

$$(2.5)$$

and put

$$\Omega = q^N E_1^{-1} + q^{2N} E_2^{-1} + q^{3N} E_3^{-1} \qquad (N = e_1 + e_2 + e_3). \tag{2.6}$$

Then (2.1) becomes

$$F(e_1, e_2, e_3) = \Omega F(e_1, e_2, e_3) \qquad (N > 0).$$
 (2.7)

For $m \ge 0$ we may write

$$\Omega^{m} = \sum_{r+s+t=m} q^{(r+2s+3t)N} C(r, s, t) E_{1}^{-r} E_{2}^{-s} E_{3}^{-t}, \qquad (2.8)$$

where C(r, s, t) is independent of N. Moreover

$$C(0,0,0) = 1 (2.9)$$

and C(r, s, t) = 0 if any one of r, s, t = 0. By (2.7) and (2.8),

$$\begin{split} F(e_1, e_2, e_3) &= \Omega^N F(e_1, e_2, e_3) \\ &= \sum_{r+s+t=N} q^{(e_1 + 2e_2 + 3e_3)N} C(r, s, t) F(e_1 - r, e_2 - s, e_3 - t), \end{split}$$

so that

$$F(e_1, e_2, e_3) = q^{(e_1 + 2e_2 + 3e_3)N} C(e_1, e_2, e_3).$$
 (2.10)

Hence (2.8) becomes

$$\Omega^{m} = \sum_{r+s+t=m} q^{(r+2s+3t)(N-m)} F(r, s, t) E_{1}^{-r} E_{2}^{-s} E_{3}^{-t}$$

$$(N = e_{1} + e_{2} + e_{3}, 0 \le m \le N).$$
(2.11)

Since

$$F(e_1, e_2, e_3) = \Omega^m F(e_1, e_2, e_3)$$
 $(0 \le m \le N),$

it therefore follows from (2.11) that

$$F(e_1, e_2, e_3) = \sum_{r+s+t=m} q^{(r+2s+3t)(N-m)} F(r, s, t) F(e_1-r, e_2-s, e_3-t). \tag{2.12}$$

This may be written in a more symmetrical form:

$$F(a,b,c) = \sum_{\substack{r+r'=a\\ s+b'=c\\ t+b'=c\\ r+s+t=m}} q^{(r+2s+3t)(r'+s'+t')} F(r,s,t) F(r',s',t')$$

$$(0 \le m \le a+b+c),$$

with a, b, c, m fixed.

For example, with $\alpha = b = c = 1$, m = 2, (2.13) gives

$$F(1, 1, 1) = q^{5}F(0, 1, 1)F(1, 0, 0) + q^{4}F(1, 0, 1)F(0, 1, 0) + q^{3}F(1, 1, 0)F(0, 0, 1)$$

$$= q^{13}(1+q) + q^{11}(1+q^{2}) + q^{10}(1+q)$$

$$= q^{10}(1+2q+2q^{3}+q^{4}).$$

Note that with $\alpha = b = c = 1$, m = 1, we get

$$F(1, 1, 1) = q^{2}F(1, 0, 0)F(0, 1, 1) + q^{4}F(0, 1, 0)F(1, 0, 1) + q^{6}F(0, 0, 1)F(1, 1, 0)$$

$$= q^{10}(1+q) + q^{11}(1+q^{2}) + q^{13}(1+q)$$

$$= q^{10}(1+2q+2q^{3}+q^{4}).$$

Indeed (2.13) is not completely symmetrical in appearance. If we put m'=r'+s'+t', then (2.13) yields

$$F(\alpha, b, c) = \sum_{\substack{r'+r=a\\s'+s=b\\t'+t=c\\r'+s'+t'=m}} q^{(r'+2s'+3t')(r+s+t)} F(r', s', t') F(r, s, t).$$
 (2.14)

The equivalence of (2.13) and (2.14) can be verified directly by merely interchanging the roles of the primed and unprimed letters in (2.13).

By means of (2.13) a number of special values are easily computed. For example we have

$$\begin{cases} F(\alpha, 0, \alpha) = q^{\alpha-1}F(1, 0, 0)F(\alpha - 1, 0, 0) \\ F(0, b, 0) = q^{2(b-1)}F(0, 1, 0)F(0, b - 1, 0) \\ F(0, 0, c) = q^{3(c-1)}F(0, 0, 1)F(0, 0, c - 1). \end{cases}$$

It then follows that

$$f(a, 0, 0) = q^{\frac{1}{2}a(a+1)}, f(0, b, 0) = q^{b(b+1)}, f(0, 0, c) = q^{\frac{3}{2}c(c+1)}.$$
 (2.15)

As another example

$$F(\alpha, 1, 0) = q^{\alpha}F(1, 0, 0)F(-1, 1, 0) + q^{2\alpha}F(0, 1, 0)F(\alpha, 0, 0)$$

and we find that

$$F(a, 1, 0) = q^{\frac{1}{2}(a^2 + 3a + 4)} (1 + q + \dots + q^a).$$
 (2.16)

Similarly

$$F(0, 1, a) = q^{2a}F(0, 1, 0)F(0, 0, a) + q^{3a}F(0, 0, 1)F(0, 1, a-1),$$

which gives

$$F(0, 1, \alpha) = q^{\frac{1}{2}(\alpha+1)(3\alpha+4)} (1+q+\cdots+q^{\alpha}).$$
 (2.17)

Also

$$\begin{cases}
F(a, 0, 1) = q^{\frac{1}{2}(a^2 + 3a + 4)} (1 + q^2 + \dots + q^{2a}) \\
F(1, 0, a) = q^{\frac{1}{2}(a + 1)(3a + 2)} (1 + q^2 + \dots + q^{2a})
\end{cases}$$
(2.18)

$$\begin{cases}
F(1, \alpha, 0) = q^{(\alpha+1)^2} (1+q+\cdots+q^{\alpha}) \\
F(0, \alpha, 1) = q^{\alpha^2+3\alpha+3} (1+q+\cdots+q^{\alpha}).
\end{cases}$$
(2.19)

Note that it follows from (2.16), (2.17), (2.18), and (2.19) that

$$\begin{cases} F(0, 1, \alpha) = q^{\alpha(\alpha+2)} F(\alpha, 1, 0) \\ F(1, 0, \alpha) = q^{\alpha(\alpha-1)} F(\alpha, 0, 1) \\ F(0, \alpha, 1) = q^{\alpha(\alpha+2)} F(1, \alpha, 0). \end{cases}$$
(2.20)

SECTION 3

It is evident from (2.1) that $F(\alpha,\ b,\ c)$ is a polynomial in q with non-negative integral coefficients. Put

$$f(a, b, c) = \deg F(a, b, c), \tag{3.1}$$

the degree of F(a, b, c). To evaluate f(a, b, c) we use (2.1):

$$F(\alpha, b, c) = q^{N} F(\alpha - 1, b, c) + q^{2N} F(\alpha, b - 1, c) + q^{3N} F(\alpha, b, c - 1) \qquad (N = \alpha + b + c).$$

Then

$$f(a, b, c) = \max \{ N + f(a-1, b, c), 2N + f(a, b-1, c), 3N + f(a, b, c-1) \}.$$
 (3.2)

In particular

$$f(a, b, c) \ge 3N + f(a, b, c-1)$$
 (c > 0),

so that

$$f(a, b, c) \ge 3N + (N-1) + \cdots + 3(N-c+1) + f(a, b, 0).$$

Since, by (3.2),

$$f(a, b, 0) \ge 2(a+b) + f(a, b-1, 0)$$

we get

$$f(\alpha, b, c) \ge 3N + 3(N-1) + \dots + 3(N-c+1) + 2(N-c) + 2(N-c-1) + \dots + 2(N-c-b+1) + f(\alpha, 0, 0).$$

Hence, by (2.15)

$$f(a, b, c) \ge \frac{1}{2}a(a+1) + b(b+1) + \frac{3}{2}c(c+1) + 2ab + 3ac + 3bc.$$
 (3.3)

We shall prove that, in fact,

$$f(a, b, c) = \frac{1}{2}a(a+1) + b(b+1) + \frac{3}{2}c(c+1) + 2ab + 3ac + 3bc.$$
 (3.4)

This is evidently true for a+b+c=0,1,2,3. Assume that (3.4) holds for a+b+c < M. By (3.4), with a+b+c=M, we have

$$f(a, b, c-1) + a + b + c - f(a, b-1, c) = c$$

 $f(a, b-1, c) + a + b + c - f(a-1, b, c) = b + c.$

Hence (3.2) reduces to

$$f(a, b, c) = 3(a+b+c) + f(a, b, c-1)$$

and it follows that (3.4) holds for a+b+c=M.

This completes the proof of (3.4).

The formulas (2.20) suggest the possibility of a relation of the following kind

$$F(a, b, c) = q^{d(a, b, c)} F(c, b, a),$$
(3.5)

for some integer d(a, b, c). In view of (3.4)

$$d(a, b, c) = f(a, b, c) - f(c, b, a).$$

By (3.4) this gives

$$d(a, b, c) = (c - a)(a + b + c + 1). (3.6)$$

Thus (3.5) becomes

$$q^{a(N+1)}F(a,b,c) = q^{c(N+1)}F(c,b,a), N = a+b+c.$$
 (3.7)

We shall show below (\$5) by a combinatorial argument that (3.7) is indeed correct.

SECTION 4

Turning now to the general situation (1.6), we define the operators E_1^{-1} , E_2^{-1} , ..., E_n^{-1} by means of

$$E_j^{-1}\phi(\mathbf{e}) = \phi(\mathbf{e} - \delta_j), \tag{4.1}$$

where the notation is that in (1.5). We also put

$$\Omega = \sum_{j=1}^{n} q^{jN} E_{j}^{-1} \phi(e) \qquad (N = e_{1} + \dots + e_{n}), \qquad (4.2)$$

so that (1.6) becomes

$$F(e) = \Omega F(e) \qquad (N > 0). \tag{4.3}$$

Iteration of (4.3) gives

$$F(e) = \Omega^m F(e) \qquad (0 \le m \le N). \tag{4.4}$$

Generalizing (2.8), we write

$$\Omega^{m} = \sum_{\Sigma r_{j} = m} q^{\omega(r)N} C(r) E_{1}^{-r_{1}} \dots E^{-r_{n}}, \qquad (4.5)$$

where

=
$$(r_1, r_2, \ldots, r_n), \omega(r) = r_1 + 2r_2 + \cdots + nr_n$$
 (4.6)

and C(r) is independent of N. Then, in the first place, for m = N, (4.5) yields

$$F(e) = q^{\omega(e)N} C(e), \qquad (4.7)$$

so that (3.5) becomes

$$\Omega^{m} = \sum_{\sum r_{j} = m} q^{\omega(r)(N-m)} C(r) E_{1}^{-r_{1}} \dots E^{-r_{n}}.$$
 (4.8)

It then follows from (4.5) and (4.8) that

$$F(\boldsymbol{e}) = \sum_{\sum \boldsymbol{r}_{j} = m} q^{\omega(\boldsymbol{r})(N-m)} F(\boldsymbol{r}) F(\boldsymbol{e} - \boldsymbol{r}). \tag{4.9}$$

This result can be written in the more symmetrical form

$$F(e) = \sum_{\substack{\Sigma r_j = m \\ r_j + r'_j = e_j}} q^{\omega(r)(N-m)} F(r) F(r'). \qquad (4.10)$$

The remark about the equivalence of (2.13) and (2.14) is easily extended to (4.10).

As a simple application of (4.10) we take

$$F(\alpha\delta_j) = q^{j(\alpha-1)}F(\delta_j)F((\alpha-1)\delta_j).$$

Then, since $F(\delta_j) = q^j$, we get

$$F(a\delta_{j}) = q^{\frac{1}{2}j\alpha(\alpha+1)} \qquad (1 \le j \le n).$$
 (4.11)

This is evidently in agreement with (2.15).

$$F(\alpha, 1, 0, ..., 0) = q^{\alpha} F(1, 0, 0, ..., 0) F(\alpha - 1, 1, 0, ..., 0) + q^{2\alpha} F(0, 1, 0, ..., 0) F(\alpha, 0, 0, ...),$$

which reduces to

$$F(\alpha, 1, 0, ..., 0) = q^{\alpha+1}F(\alpha-1, 1, 0, ...) + q^{\frac{1}{2}\alpha(\alpha+1)+2\alpha+2}.$$

This gives

$$F(a, 1, 0, ..., 0) = q^{\frac{1}{2}(a^2 + 3a + 4)} (1 + q + ... + q^a). \tag{4.12}$$

For example

$$F(1, 1, 0, ..., 0) = q^{4}(1+q), F(2, 1, 0, ..., 0) = q^{7}(1+q+q^{2}),$$

in agreement with earlier results.

Clearly $F(\mathbf{e})$ is a polynomial in q with non-negative integral coefficients. Put

$$d(e) = \deg F(e), \tag{4.13}$$

the degree of F(e). Then by (1.6)

$$d(\mathbf{e}) = \max_{1 \le j \le n} \left\{ jN + d(\mathbf{e} - \delta_i) \right\}. \tag{4.14}$$

Thus, by (4.11)

$$d(e) \geq n(N + (N-1) + \cdots + (N-e_n+1)) + (n-1) ((N-e_n) + (N-e_n-1) + \cdots + (N-e_n-e_{n-1}+1)) + \cdots + 2((N-e_n-\cdots-e_3) + \cdots + (N-e_n-\cdots-e_2+1)) + \frac{1}{2}e_1(e_1+1).$$

After some manipulation this becomes

$$d(e) \ge \frac{1}{2}N_1 + \frac{1}{2}N_2 , \qquad (4.15)$$

where

$$N_1 = \sum_{j=1}^{n} je$$
 , $N_2 = \sum_{i,j=1}^{n} \max(i,j)e_i e_j$. (4.16)

We shall show that indeed

$$d(e) = \frac{1}{2}N_2 + \frac{1}{2}N_1. \tag{4.17}$$

To prove (4.17) it suffices to show that

$$N + d(e - \delta_k) - d(e - \delta_{k-1}) = e_k + e_{k+1} + \dots + e_n \quad (k = 2, 3, \dots, n)$$

under the assumption that (4.17) holds up to and including N-1. Making use of (4.17) we find that

$$d(e - \delta_k) - d(e - \delta_{k-1}) = \sum_{j=1}^{k-1} e_j$$
 $(k = 2, 3, ..., n)$

and (4.18) follows.

Corresponding to

$$e = (e_1, e_2, ..., e_n)$$

we define

$$e' = (e_n, e_{n-1}, \ldots, e_1).$$

Clearly

$$N = \sum_{j=1}^{n} e_j = \sum_{j=1}^{n} e_{n-j+1}.$$

However

$$N'_1 = \sum_{j=1}^n j e_{n-j+1} = \sum_{j=1}^n (n-j+1) e_j = (n+1)N - N_1.$$

Thus

$$d(e') = \frac{1}{2}(N+1)\left((n+1)N - N_1\right),\tag{4.19}$$

so that

$$d(e) - d(e') = \frac{1}{2}(N+1)(2N_1 - (n+1)N). \tag{4.20}$$

In particulr, for n = 3, (4.20) reduces to

$$d(e) - d(e') = (N+1)(c-a)$$

in agreement with (3.6).

We shall show by a combinatorial argument in §5 that

$$F(e) = q^{\frac{1}{2}(N+1)(2N_1 - (n+1)N)} F(e'). \tag{4.21}$$

SECTION 5

The combinatorial problem alluded to at the beginning of the paper is the following. Put

$$e = (e_1, e_2, \dots, e_n), N = e_1 + e_2 + \dots + e_n,$$
 (5.1)

where the e_i are non-negative integers. Consider sequences of length N:

$$\sigma = (\alpha_1, \alpha_2, \dots, \alpha_N),$$

where the a_j are in $Z_n = \{1, 2, ..., n\}$ and each element i occurs exactly e_i times; e is called the signature of σ . We define the weight $\omega(\sigma)$ of σ by means of

$$\omega(\sigma) = \sum_{j=1}^{n} j \alpha_{j}. \tag{5.3}$$

We seek $f(\mathbf{e}, k)$, the number of sequences σ from Z_n of signature $\boldsymbol{\sigma}$ and weight k. It is convenient to define a refinement of $f(\mathbf{e}, k)$. For $1 \leq j \leq n$, we let $f_j(\mathbf{e}, k)$ denote the number of sequences σ from Z_n of signature $\boldsymbol{\sigma}$, weight k, and with last element $\alpha_N = j$. It follows immediately from the definition that

$$f(e, k) = \sum_{j=1}^{n} f_{j}(k, k).$$
 (5.4)

Moreover

$$f_{j}(e, k) = \sum_{i=1}^{n} f_{i}(e - \delta_{j}, k - jN),$$
 (5.5)

where δ_j has the same meaning as above.

$$\begin{cases}
F(\mathbf{e}) = F(\mathbf{e}, q) = \sum_{k} f(\mathbf{e}, k) q^{k} \\
F_{j}(\mathbf{e}) = F_{j}(\mathbf{e}, q) = \sum_{k} f_{j}(\mathbf{e}, k) q^{k},
\end{cases}$$
(5.6)

so that

$$F(\boldsymbol{e}) = \sum_{j=1}^{k} F_{j}(\boldsymbol{e}). \tag{5.7}$$

Multiplying both sides of (5.5) by q^k and summing over k, we get

$$F_{j}(\mathbf{e}) = \sum_{k} \sum_{i=1}^{n} f_{i}(\mathbf{e} - \delta_{j}, k - jN) q^{k}$$

$$= q^{jN} \sum_{k} f(\mathbf{e} - \delta_{j}, k) q^{k}$$

$$= q^{jN} F(\mathbf{e} - \delta_{j}).$$

Hence, summing over j, it is clear that

$$F(\mathbf{e}) = \sum_{j=1}^{n} q^{jN} F(\mathbf{e} - \delta_j). \tag{5.8}$$

This is identical with the recurrence (1.6); also F(e) satisfies the same initial conditions as in §1.

The polynomial $F(\boldsymbol{e})$ also satisfies a second recurrence. To find this recurrence we let $\overline{f}_j(\boldsymbol{e},k)$ denote the number of sequences σ from Z_n with signature \boldsymbol{e} , weight k, and first element $e_1=j$. Then of course

$$f(\boldsymbol{e}, k) = \sum_{j=1}^{n} \overline{f_j}(\boldsymbol{e}, k). \tag{5.9}$$

We have also

$$\overline{f}_{j}(e,k) = \sum_{i=1}^{n} \overline{f}_{i}(e - \delta_{j}, k - N_{1} + j) = f(e - \delta_{j}, k - N_{1} + j),$$
 (5.10)

where

$$N_1 = e_1 + 2e_2 + \dots + ne_n. {(5.11)}$$

Hence, by (5.9)

$$F(e) = \sum_{j=1}^{n} F(e - \delta_{j}) q^{N_{1}-j}$$
.

Now put

$$e' = (e_n, e_{n-1}, \dots, e_1)$$
 (5.12)

and

$$\sigma' = (\alpha'_N, \alpha'_{N-1}, \ldots, \alpha'_1),$$
 (5.13)

where

$$\alpha_{i}' = n - \alpha_{i} + 1$$
 $(j = 1, 2, ..., N).$

Corresponding to (5.11), we put

$$N_1' = e_n + 2e_{n-1} + \dots + ne_1. \tag{5.14}$$

Thus

$$N_1 + N_1' = (n+1)N.$$
 (5.15)

The weight of σ' is evidently

$$\omega(\sigma') = \sum_{j=1}^{N} j \alpha'_{N-j+1} = \sum_{j=1}^{N} (N-j+1) \alpha'_{j} = \sum_{j=1}^{N} (N-j+1) (n-\alpha_{j}+1)$$

$$= (n+1)N(N+1) - \frac{1}{2}(n+1)N(N+1) - (N+1)\sum_{j=1}^{N} \alpha_{j} + \sum_{j=1}^{N} j \alpha_{j}.$$

This gives

$$\omega(\sigma') = \frac{1}{2}(n+1)N(N+1) - (N+1)N_1 + \omega(\sigma).$$
 (5.16)

Thus there is a 1-1 correspondence between sequences σ of signature e and weight k, and sequences σ' of signature e' and weight

$$\frac{1}{2}(N+1)((n+1)N-2N_1)+k,$$

so that

$$f(e, k) = f(e, \frac{1}{2}(N+1)((n+1)N-2N_1) + k).$$

This yields

$$F(e) = q^{\frac{1}{2}(N+1)(2N_1 - (n+1)N)} F(e'), \qquad (5.17)$$

so that we have proved (4.21). It is proved in (4.17) that

$$\deg F(e) = \frac{1}{2}(N_1 + N_2), \qquad (5.18)$$

which implies

$$f(e, k) = 0$$
 $\left(k > \frac{1}{2}(N_1 + N_2)\right).$ (5.19)

Also the proof of (4.17) gives

$$f(e, \frac{1}{2}(N_1 + N_2)) = 1.$$
 (5.20)

In the next place, define

$$\overline{\sigma} = (\alpha_N, \alpha_{N-1}, \ldots, \alpha_1),$$

so that

$$\omega(\overline{\sigma}) = \sum_{j=1}^{N} j \alpha_{N-j+1} = \sum_{j=1}^{N} (N-j+1) \alpha_{j} = (N+1) N_{1} - \omega(\sigma).$$
 (5.21)

It therefore follows from (5.19) and (5.20) that

$$f(e, k) = \begin{cases} 1 & \left(k = NN_1 + \frac{1}{2}(N_1 - N_2)\right) \\ 0 & \left(k < NN_1 + \frac{1}{2}(N_1 - N_2)\right). \end{cases}$$
 (5.22)

Thus

$$\begin{cases} \omega_{\text{max}}(\sigma) = \frac{1}{2}(N_1 + N_2) \\ \omega_{\text{min}}(\sigma) = NN_1 + \frac{1}{2}(N_1 - N_2). \end{cases}$$
 (5.23)

Finally it is evident from (5.21) that

$$F(e, q) = q^{(N+1)N_1} F(e, q^{-1}),$$
 (5.24)

where we are using the fuller notation, F(e, q) = F(e). Put

$$f_n(N, k) = \sum_{e_1 + \cdots + e_n = N} f(e, k),$$

so that $f_n\left(\mathbb{N},\,k\right)$ is the number of sequences from \mathbb{Z}_n of length \mathbb{N} and weight k. Also put

$$F_n(N,q) = \sum_k f_n(N,k)q^k.$$

Then it follows almost immediately from the definition of $f_n\left(\mathbb{N},\,k\right)$ that

$$F_n(N, q) = q^{\frac{1}{2}N(N+1)} \prod_{j=1}^{N} \frac{1 - q^{nj}}{1 - q^j}.$$
 (5.25)

Indeed it suffices to observe that the right-hand side of (5.25) is equal to

$$\prod_{j=1}^{N} (q^{j} + q^{2j} + \cdots + q^{nj}).$$

A curious partition identity is implied by (5.25). Put

$$\prod_{j=1}^{N} (1 - q)^{-1} = \sum_{m=0}^{\infty} p(m, N) q^{m},$$

so that p(m, N) is the number of partitions of m into parts $\leq N$. Now rewrite (5.25) in the form

$$q^{\frac{1}{2}N(N+1)} \sum_{k=0}^{\infty} p(k, N) q^{k} = \sum_{m=0}^{\infty} p(m, N) q^{mn} \sum_{k} f_{n}(N, k) q^{k}.$$

Then, equating coefficients of q^k , we get

$$p\left(k - \frac{1}{2}N(N+1)\right) = \sum_{mn \le k} p(m, N) f_n(N, k - mn).$$
 (5.26)

Another identity is obtained by replacing n by 2n in (5.25):

$$F_{2n}(N,q) = q^{\frac{1}{2}N(N+1)} \prod_{j=1}^{N} \frac{1 - q^{2nj}}{1 - q^{j}}.$$

Then by division

$$F_{2n}(N, q) = F_n(N, q) \prod_{j=1}^{N} (1 + q^{nj}).$$

Hence, if we put

$$\prod_{j=1}^{N} (1 + q^{j}) = \sum_{m=0}^{\frac{1}{2}N(N+1)} \overline{p}(m, N) q^{m},$$

so that $\overline{p}(m, N)$ is the number of partitions of m into distinct parts $\leq N$, we get

$$\sum_{k} f_{2n}(N, k) q^{k} = \sum_{k} f_{n}(N, k) q^{k} \sum_{m=0}^{\frac{1}{2}N(N+1)} \overline{p}(m, N) q^{mn}.$$

Therefore

$$f_{2n}(N, k) = \sum_{mn \leq k} \overline{p}(m, N) f_n(N, k - mn). \qquad (5.27)$$

For references to other enumerative problems involving sequences see [1].

REFERENCE

[1] L. Carlitz, "Permutations, Sequences and Special Functions," SIAM Review Vol. 17 (1975), pp. 298-322.
