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SECTION 1

Let k, p, q, v be positive integers, ¢ < p < k, » a non-negative integer
and {A; = 1, A;, Ap, ...} a sequence of indeterminates. Let e(k, j) be the
(signed) Stirling number of the first kind defined by

k
zs(k, Hxd = x(@-1) ... (@ -k +1).
J=0
Put
L, p, q) = Lr1Ty oo Byhg hg, - Mg, » 1.1)

where the summation is over all sets of integers »,, r,, ..., r, such that

p=r,>2r, >2r,>...21r,=p-q, (1.2)
and
d; =7 4 - r G =1, 2, , V) (1.3)
A. Ran [2] proved that
k
D sk, HLG + 7, p, @) 20 (1.4)
J=0

identically, that is, for arbitrary A;, A,, Aj,

Hanani [1] has recently given another proof of (1.4). Hanani's proof is
elementary but makes use of a rather difficult lemma.

The purpose of the present note is first to give another proof of (1.4)
that makes use of the familiar recurrence

s(k+1, ) =8k, g - 1) - kes(k, J) (1.5)

and the recurrence (2.2) below satisfied by L(v, p, g). We show also that a
result like (1.4) can be obtained for the more general sum

Ly, ps @) = 9 (2175 won ) Ag Ag, oen Mg, (1.6)

where again the summation is over all r,, »,,

(1.3).

.., 1, that satisfy (1.2) and
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We have been unable to find a simple generating function for L(v, p, q).
However, we do give an operational formula for the sum

L p
Fy(y, 2) =Z ZL(U, p, QPyFz9. (1.7)
p=0 g=0

See (4.5) below.

SECTION 2

In view of (1.2) and (1.3) we can rewrite (1.1) in the following form:

L@, p,q) = Z 0-d) (p-dy=dy) oo p=dy= oo =dIAg Ag, oo hg,  (2.1)
dy+.--+d,=q

where the summation is over all nonnegative integers d,,d,, ... d, satisfy-
ing dy + -+ +d, = g. Thus

L(v+1,p,q) = Z p-D@p-d-4d,) ... (p—d—dl—...—dv)Ad)\dl cee Mg,
d+d, + c+d,=q

Z(p d)A Z (p-d=dy) ... p=d=dy= .. =d)hg .. g,
c+d,=q-d
Z(p d)AdL(v p-d,q-d),
d=0
so that

q

Lw+1,p,q) = Z(p—d)AdL(u,p-d,q-d). (2.2)
d=0

In the next place, by (1.5) and (2.2),

k+1

s(k+1, NIG+n,p, @) = D {s(k, §-1) - k-sk, N}L(G+n,p,q)
J=0 J

J
—st(k, NL(G+n, p, q)
8=0

k
+ Zs(k, NDLG+n+1,p, q)
i=o

J
st(k, LG +n,p, q)

8=0

-
+Zs(k J)Z(p DNEG+n, p-d, q-d)

(continued)
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J
= k) 8k, HLG+n, D, @)
8=0

q k
Y p-DA Y sk, DLG+n, p-d, q-d).
d=0 J=0

Hence, if we put

k

R(kynyps @) = 9 8k, HIG+n,p,q), (2.3)
j=0

it is clear that we have proved that

q
R(k+1,n,p,q) = -kR(k, n,p, q) +Z(p—d))\d}?(k,n,p—d,q—d). (2.4)
d=0

In particular, for k = p, (2.4) reduces to

q
Rp+1,n,p0,q) = 9, @-DNR@,n,p-d, q-d). (2.5)
d=1
Taking ¢ = 0 in (2.1) we get
L(v, p, 0) = Z (p-dy) «oo (P=dy=...=dAaAg, -+- Ag, = D°

as is also clear from (1.1). Thus substitution in (2.3) gives

.3
Rk, 1,0, 0) = ) 8k, Hp*=propp-1) ... (p-k+1),
Jj=0

so that
R(k,n,p,0) =0 (k >p), (2.6)
while
" o !
R(k, n, p, 0) =7§—T%—! (k < p). 2.7

Finally, by (2.6) and repeated application of (2.4) and (2.5), we have

R(k,n,p, q) =0 (k>p2>2q20). (2.8)

SECTION 3
The above proof of (1.4) suggests the following generalization. Let £2>1
and define generalized Stirling numbers of the first kind by means of

k
D sk, Hzd = w@ - 1)@ - 2% ... (2 - k- D). (3.1)

8=0



246 SOME REMARKS ON A COMBINATORIAL IDENTITY

Put
t
Lt(‘l),p,q) =Z(P11’2 “ee I’U) )\dl)\dz e )\d",
where the summation is over all Prs Loy eens Py such that

Pp=ry2r,2r,2 ... 27, =p-qg,

and
d; =r_, - r; G =1, 2, , V)
Then
k
Zst(k DL G +n,p, q)
J=0
where

>0, k>p>q>0.

The proof is exactly like the proof of (2.8) and will be omitted.

SECTION 4
Put
@@,w—z:Ejuqum%qm@,w- -
=0 p-
and
A(2) =Z)\dzd.
d=0
By (2.1),
L(v, p, @) = E: QJCZHp dy=dy) e (pdy= e =)y A
4+
so that
F, (y, ) = Z Z (p—dl)(p—dl—dz)...(p-dl-...

,=0 p2d,+

. }\dl )\dz cee ).duypz

Z Z p(p—dz)...(p—dz—...—dv)
d, +

,dy =0 >d, +
Pt A5 A A P( )d, 2
d, M, +++ 4, Y Yz 2

-d,)

- +d,

[JUNE

(3.2)

(3.3)

(3.4)

(4.1)

(4.2)
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= A(ya) Z Z p(p d) s (p=dy= .. —dy)

,dy,=0 p>d,+ p
 Ag, .- Mg yPaft e
Since
dy
E Z p(p dy) ver (p=dy= o =ddhg, oo Ag yPa T
y=0 p2>d,+
eeo4d,
- (yD) Z 2 (p ) oo (p=dy = e —d)hg oo Ag yPet T
2reeesd,=0 p2dy+
where D, = 9/9y, it follows that
F,(ys 2) = (yhy2)D,)F, 1 (y, 2). (4.3)

Iteration of (4.3) gives
P, (y> ) = (yA@wa)D,)" P Gy, B (@2 1).
Moreover, by (2.1) and (4.1),
Filys ) =D D (o= Dhgyta =3 D phayP (ya)?
d=0 p=d d=0 p=0

- —L—hwa = (yhEHD)P @y, 2.
1 -y

Hence we get

F,(y, 8 = (yhwa)D,) Foly, 2) (v 20) (4.4)
and more generally
Fins 8 = (yA@a)Dy) F,(y, 2) (20, n > 0). (4.5)
By (2.3)
R(k,n,p,q) = Zk:s(k, NDLG+n, Dy Q).
Thus 7
Cpn @ 2) _Z ZR(k 0> QyFal = i)s(k, DFiyn(y,s 2)
£~

k .
Zs(k, N(yA@aHD,) Py, 2.
=0
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Hence if we put

k
20 = z(z-1)...(z-k+1) = ZE:s(k, $zd,

J=0
we have
Grn > 2 = (YA - F (y, 2), (4.6)
where by (2.8),
Grm s B =9 9 Rk, n,p, @yPa’. (4.7)
q=0p=4q
p2k
We remark that in the special case
Ap=1 (n=20,1, 2, ...), (4.8)
(1.1) reduces to
L, p,q) =) 17y «n Ty, (4.9)
where the summation is over all »,, »,, ..., P, such that

p2r 2r, > ... 2r, =p-q.

It is proved in the following article, "Enumeration of Certain Weighted Se-
quences,'" that, when (4.8) holds, L(v, p, q) satisfies

q
Lw,p,q) = pq_!qz:(—l)s(g)(p—s)“q'l (v>1;p>qg2>0). (4.10)
8=0
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