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1. INTRODUCTION 

Layman [3] recalled the formulas [2] 

n 

(i.D *2„ - £ (UK 
k = 0 

(1.2) 2"F2n = £ ( ? K » 
k = 0 

a-3) 3 » F 2 B - £ ( J ) V , 
k = 0 

where, as usual, the Fn are the Fibonacci numbers defined by 

F0 = 0, Fx = 1, Fn + 1 = Fn + Fn_x ( n ^ l ) . 

As Layman remarks, the three identities suggest the possibility of a general 
formula of which these are special instances. Several new sums are given in 
[2], Many additional sums occur in [1]. 

Layman does not obtain a satisfactory generalization; however, he does 
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:: 

(1.4) 5"F2n = i2(l)2"-kF5k, 
k= 0 

n 

(1.5) 8nF2n = £(j)3"- k F 6 k , 
k= o 

n 

(1.6) F3n = (-DnS(^)(-2)^> 
k= 0 
n 

(1.7) 5nF3n = (-irJ^(l)(-2)kF5k. 
k = o 

He notes also that each of the sums he obtains remains valid when Fn is re-
placed by Ln, where the Ln are the Lucas numbers defined by 

L0 = 2, Lx = 1, Ln+1 = Ln+Ln_x (n > 1). 
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In the present paper, we consider the following question. Let p, q be 
fixed positive integers. We seek all pairs X, y such that 

n 

(1.8) XnFpn = J^(l)u%k (n = 0, 1, 2, . . . ) . 
k = 0 

It is easily seen that p ^ q. We shall show that (1.8) holds if and only if 

(1.9) X = (-l)p -p-, v = (-1) 

Since (1.8) is equivalent to 
n 

(1.10) (-V)nFqn = 2(fc)("A)fcFPfc (n = °' 1' 2> --0' 
k=o 

we may assume that p < q» However, this is not necessary since we may take 
F_n = (-l)n~1Fn. Also, the final result is in fact for all p, q, p ̂  q. 

For the Lucas numbers, we consider 
n 

(1.11) XnLpn = Y,{k)]lkL^ (n = °> X> 2' •••)' 
k=0 

We show that (1.11) holds if and only if X, y satisfy (1.9) or 

d.9)' x- /2- , y—/2-. 
p + <? p + q 

In the next place, if w denotes a root of x2 = a? + 1, we show that 

(1.12) ^ P " - £ ( J ) p V * (n = 0, 1, 2, . . . ) , 
k=0 

if and only if X, y satisfy (1.9). 
The stated results concerning (1.8) and (1.11) can be carried over to the 

more general 
n 

(1.13) XnFpn + r = Y^(iykF^ + r (n = °> !> 2> •••> 
k = o 

and 
n 

(1.14) XnLpn+r = Yl{k)llkL^k + r (n = 0 , 1 , 2 , . . . ) , 
k = o 

where r is an arbitrary integer. We show that (1.13) holds if and only if X, 
y satisfy (1.9); thus, the result for (1.13) includes that for (1.8). How-
ever, (1.14), with v ± 0, holds if and only if X, y satisfy (1.9); thus, the 
result for (1.13) includes that for (1.8). But (1.14), with r + 0, holds if 
and only if X, y satisfy (1.9); thus, the values (1.9)' for X, y apply only 
in the case r = 0. 

As for 

n pn+r \ ^ ( 71 \ v qk + r , n t n N 
XW = 2-j\krW (?2 = 0 j l s 2 ' "')'-k=0 

it is obvious that this is equivalent to (1.12) for all r, 



1978] SOME CLASSES OF FIBONACCI SUMS 413 

The formulas (1.8), (1.11), (1.12), (1.13), (1.14) with X, y satisfying 
(1.9) can all be written in such a way that they hold for all p, q. For ex-
ample, (1.8) becomes 

(i.i5) Fq\n = E ( - i ) p ( " - k ) ( ^ ) F p ^ : ^ . 

For p = q9 this reduces to a mere tautology. However, for (1.11) with A,y 
defined by (1.9), we have 

(i.i6) F , V = E<-i>fc(fc)vP";fr 
k=0 

For q = p, this reduces to 
n 

(1.17) Lpn = J^(-Vk(l)Zp~kZpk-k=0 

Note that (1.15) and (1.16) had been obtained in [1], 
For some remarks concerning (1.17) see §7 below. In particular, the fol-

lowing pair of formulas is obtained: 
n 

(1.18) (-l)*Lpn_r = £ (-l)k (n
k)Lnf kLpk + r, 

fc=o 
n 

d.19) (-iy~lFpn_r = Y*<-1)k(k)Ll~kFp*+*> 
k=0 

where r is an arbitrary integer. 
Formulas (1.18) and (1.19) differ from (1.13) and (1.14) in a rather es-

sential way. The former pair suggest the problem of determining X,y,Cr 

such that 
n 

CrX Lvn_r = / j (-1) ( kJU Lpk + r, 
k =0 

and similarly for 
n 

Cr^nF
pn-r = 2^ ^~^ \k)^ FPk + r> 

k=0 

where Cr depends only on r. This is left for another paper. 

SECTION 2 

Let a, b denote the roots of x2 = x + 1. We recall that 

(2.1) F„ = ^ I X» £n= a" + &n. 

Thus, the equation 

k=0 

becomes 
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(2.3) Xn(apn - bpn) = J2 (Uk)vHaqk - bqk). 

Multiplying both sides of (2.3) by x and summing over n we get 

—p ^7- = E x" £ (IV^ - bqk) 
1 - \avx 1 - Xbpn „ = 0 ktoXK' 

k=0 n=0 

y*(<T - b ) 
(1 - * ) * + 1 

Since 

(2.4) ^ 
1 - XLpx + (-l)pXzxz (1 - x)A - ]iLqx(l - x) + ( - I )*y z aT 

For # = 0, t h i s r educes to 

(2 .5 ) XFp = ]iFq. 

Thus, 

(2 .6 ) 1 - XLpx + (-l)pX2x2 = (1 - x)2 - ]iLqx(l - x) + ( - l ) V ^ 2 . 

Equat ing c o e f f i c i e n t s of x and # 2 , we ge t 

(2 .7 ) XLp = 2 + y l ^ 

and 

(2 .8 ) ( - D P A 2 = 1 + ]iLq + ( - l ) V , 

r e s p e c t i v e l y . 
Now by (2 .5 ) and ( 2 . 7 ) , we have 

XLpFq = 2Fq + \iLpLq = 2Fq + XFpLq, 

so t h a t 

(2.9) X(LpFq - FpLq) = 2 ^ . 

It is easily verified that 

(2.10) LpFq - FpLq = 2 ( - l f - \ . q . 

Hence, (2.9) yields 

(2.ii) A = ( - D p ^ - , v = ( - D p / ^ ; 
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the second equality is of course a consequence of (2.5). 
It remains to consider the condition (2.8). We shall show that (2.8) is 

implied by (2.11), or, what is the same, by (2.5) and (2.7). To do this with 
a minimum of computation, note that (2.5), (2.7), (2.8) can be replaced by 

( 2 . 5 ) ' X(ap - bp) = (1 + \iaq) - (1 + \ibq), 

( 2 . 7 ) ' X(ap + bp) = (1 + \iaq) + (1 + ]ibq), 

( 2 . 8 ) ' X2(ab)p = (1 + \iaq)(l + vbq), 

respectively. Subtracting the square of (2.5)f from the square of (2.7)', we 
get (2.8)'. 

We have therefore proved that (2.5) and (2.7) imply both (2.8) and (2.11). 
Conversely, (2.11) implies (2.5) and (2.7). The first implication, (2.11) 
(2.5) is immediate. As for (2.11) -> (2.7), we have 

p *PF< " FPL? q 2(-l) PV p XLp - ]iLq = (-l)p- = — = (-1)* = , 
£q-p q-p 

by ( 2 . 1 0 ) . Hence, XLP - \iLq = 2 . 
This completes the proof of the following: 

TkzoKQjm 1: Let p, q be fixed positive integers, p ^ q. Then, 

n 

(2.12) XnFpn = J2(l)^qk (n = 0, 1, 2, . . . ) , 
k = 0 

if and only if 

(2.13) X = (-l)p
lr

L-, y = (-1) jp 3 K \ -1-/ jp ' 
£q-P £q~P 

Thus, we have the explicit identities 
n 

(2.14) (-lfnF^Fpn = Y,(-VPk(l)FpFZ:k
pFqk (n = 0, 1, 2, . . . ) . 

k = o 

If we use the fuller notation X(p, q) , \i(p, q) for A, y in (2.13), then, 

\l(q, p) = (-IF"1^-, 
<7-P 

so that 

(2.15) y ( q , p ) = -A(p, <?). 

In proving Theorem 1, we have not made any use of the positivity of p and 
q. All that is required is that p and q are distinct nonzero integers. This 
observation gives rise to additional identities. Replacing p by -p in (2.13) 
we get 

vP F1 / \ FP 
r p + q r p + q 

k=0 

(2. ,16) 

and (2, 

(2 . • 17) 

.14) 

H-P, q 

becomes 

F F 
*-q *-pn 

= 

Comparison of (2.17) with (2.14) yields 
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(2.18) i-l)pn-l£(-l)Pk(Z)FpF?-+fak -E(-D*^pn;^ 

(n = 0, 1, 2, ...; p2 ̂  q 2). 

Similarly, 

Mp, -?) = F^-= ("l)PA(-p, <?), 
p + <? 

(2.19) 

y(p, -?) ='(»I) £ ?" 1TT Z-= (-ify(-p, ?) 

and we again get (2.17). 
Finally, the formulas 

X(-p, -<?) = r f i - = (-l)PA(p, q-), 
(2.20) 

v(-P, -q) = (-I)*/*-- (-Dp + *y(p, ?) 
^p + 4 

again lead to (2.14). 

We remark that for q = p + 1 and p + 2, (2.14) reduces to 

(2.2i) P;+ 1^B = I>i>p("-*>(]jW*(p+1)k 

and 

(2.22) *p»+2*pn = E ( - i ) p ( " - k ) ( ? ) ^ ( p + 2 ) , , 
k = o 

respectively. 

SECTION 3 

We now c o n s i d e r 
n 

(3.1) XnLpn = S ( j ) y ^ q » (« = 0, 1, 2, . . . ) , 
fc = 0 

where p, ̂  are distinct nonzero integers. Since Ln- an + bn, we have 

Hence, 

1 - A a ^ 1 ~ AZ? # n = o , k = o 

1 

1 " x _ y < ^ ! _ y ^ g 
1 - X 1 - X 

so that 
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2 - \Lpx 2 - (2 + \iLq)x 
(3 .2 ) 

1 - XLpx + (~l)pX2x2 1 - (2 + \iLq)x + ( l + \iLq + ( - D ' V ) a : 2 

Equating coefficients and simplifying, we get 

( XLp = 2 + \iLq 
(3.3) { 

) (-1)PA2 = 1 + ]iLq + (-l)V. 
C o e f f i c i e n t s of x2 and of x3 bo th l ead t o t h e second of ( 3 . 3 ) . 

We can r e w r i t e (3 .3 ) i n t h e form 

S X(ap + bp) = (1 + ]iaq) + (1 + y i* ) 

A 2 (a£ ) p = (1 + y a « ) ( l + \xbq). 

Squar ing t h e f i r s t of (3 .4 ) and s u b t r a c t i n g four t imes t h e second, we ge t 

X*(a
p - bp)2 = M2(aq - bq)2, 

and t h e r e f o r e , 

XFp = ±]iFq. 

I f we t a k e XFp = }iLq, t h e n , by t h e f i r s t of ( 3 . 3 ) , 
XLpFq = 2Fq + ]iLqFq = 2Fq + \LqFp , 

that i s , 
(3 .5 ) X(LpFq - LqFp) = 2Fq. 

S i n c e , by ( 2 . 1 0 ) , 
LPF^ - LqFp = 2 ( - l ) p F < ? . p , 

W e g 6 t F Fv 
(3 .6 ) X = ( - D ^ T T 1 - , y = ( - 1 ) P T T ^ - . 

On t h e o t h e r hand, i f XLp = -]lLq, then 

X(LpFq + L^Fp) = 2 ^ , 

which reduces t o 
Fq FP 

(3 .7 ) x = - = — = x ( p , -<?), y = - p — = y(-p» ? ) • 
^ p+ q p + q 

This completes the proof of 

lkQ.Oh.dm 2: Let p, q be fixed nonzero integers, p ^ q. Then, 

n 

(3.8) A%n = £ (?)y%c (n = °> lj 2' ---̂  
if and only if X and y satisfy either (3.6) or (3.7). 

Thus we have the explicit identities 

(3.9) i-DpnFn
qLpn = £ ( - D p k (£)#*•,»:&* (n - °> ^ 2' •••) 

and 

(3.10) FnLpn = 2 ( - D k ( J ) ^ p n ; ^ f c (n = 0, 1, 2, . . . ) . 
k=o 
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Note that (3.9) becomes (3.10) if p is replaced by -p or q is replaced by 
-q. 

SECTION k 

Let w be a r o o t of x2 = a; + 1 and c o n s i d e r 

(4.1) Xnwpn =J2vkw«k (n = 0 , 1 , 2 , . . . ) , 
fc = o 

where p, (7 are fixed nonzero integers, p ^ q, and A and y are assumed to be 
rational. Since (4.1) is simply 

Xnwpn = (1 + ]iwq)n (n = 0, 1,2, . . . ) , 

it suffices to take n = 1: 

(4.2) A^p = 1 + yw*. 

Recall that 

(4 .3 ) wn = Fnwn+ F n _ x (n = 0 , ± 1 , ±2 , . . . ) , 

so t h a t (4 .2 ) becomes 

X(Fpw + F p _ x ) = 1 + y ( F ^ + Fq_x). 

Since X and y a r e assumed t o be r a t i o n a l , we have 

( XFp = ]iFq 

(4 .4 ) { 
J XFp^ = 1 + y ^ _ x . 

Eliminating y, we get 

It is easily verified that 
/? 7? _ W V = (-.1^ P— 
rp-lrq EV q-\ K J J? ' 

<7-P 
and therefore, 
(4.5) X = (-Dp/^-5 y = (-DPT^-. 

r 4 ~ P <7~P 
We state 
IhdOKQxa 3: Let u denote a root of #2 = x + 1 and let p9 q be fixed non-

zero integers, p =f q. Then, 
(4.6) Xwp = 1 + \xw\ 
where p and q are rationale if and only if (4.5) is satisfied. Hence, (4.6) 
becomes 

(4.7) Fqwp = (-DPFq.p + Fpwq. 
It follows from (4.7) that 

k=0 
re we get both 

(4.8) Fq\n ^(-^(lyr-^ 

k=o 
and therefore we get both 

k=o ' ' 
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and 

(4.9) F»Lpn = ^(-Dn-k(l)F^:k
pFpLqk, 

k=o 
in agreement with (2.14) and (3.9), However, this does not prove Theorems 1 
and 2, 

SECTION 5 

We now discuss 
n 

(5.1) A % n + ,= ^(%)v%k + r (n = 0, 1, 2, . . . ) , 
k=o 

where p ^ q but p, q, r are otherwise unrestricted. One would expect that 
the parameters A, y depend on v as well as p and q. However, as will be seen 
below, A and y are in fact independent of p. 

It follows from (5.1) that 

b1 

yP„ 1 _ ^ ^ 1 - ^ 1 - Aap^ 1 - yb^x x J - ya^x _ y£>?x 

1 - (1 + ya^)x 1 - (1 + \ibq)x 
so that 

k=0 k = 0 k=o k=Q 

Equating coefficients of x , we get 

(5.2) ar(\kapk- (1 + \iaq)k) = J ^ x V * - (1 + y & V ) 

(fc = 0, 1, 2, . . . ) . 

For fc = 1, (5.2) implies 

(5.3) XFp + r = Fr + \±Fq + r. 

We now consider separately two possibilities: 

(i) XaP = 1 + mq; 
(ii) Aap ̂  1 + ya^. 

It is clear from 

a*(Xap - (1 + \iaq)) = 2^(A£P - (1 + yj*)) 

that (i) implies 

(5.4) Xbp = 1 + yZ/7. 

Subtracting (5.4) from (i), we get 

(5.5) XFp = \xFq. 

Hence, again using (i), 

Fq - aqFpJn - rq (apFq - aqFv)X = Fg. 
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Since 
a% - aqFp = —L^(ap(aq - bq) - aq(ap - bp)) 

_ aqhp - apbq _ , n p p 
a - b " K L) I-P> 

i t fo l lows t h a t 

(5 .6 ) A = ( - 1 ) P / ^ , y = i-lf-fi-. 
q-p < ? - p 

We now assume ( i i ) . Take k = 1 , 2 , 3 i n ( 5 . 2 ) : 

a*{\ap - (1 + y a ? ) ) = br(\bp - (1 + y& ? )) 

a r ( A 2 a 2 p - (1 + vaq)2) = &r(A22>2p - (1 + yZ>?)2) 

a r ( A 3 a 3 p - (1 + p a ' ) 3 ) = 2>r(A3&3p - (1 + y 2 / 0 3 ) . 

Dividing the second and third by the first, we get 

\av + (1 + \±aq) = A£p + (1 + yM) 
(5 .7 ) 

X2a2p + a p ( l + ya*) + ( l + ]iaq) = A 2 £ 2 P + A £ (1 + ]ibq) + (1 + yZ/7)2. 

The f i r s t of (5 .7 ) y i e l d s 

(5 .8 ) XFp + ]iFq = 0 

wh i l e t h e second g ives 

(5 .9 ) X2F2 p + XFp + XyFp + ^ + 2\iFq + \x2F2q = 0 . 

M u l t i p l y i n g (5 .9 ) by Fq and e l i m i n a t i n g y by means of ( 5 . 8 ) , we ge t 

\2F2pFq + XFpFq - XzFpFp + q - 2\FpFq + A 2 F p % = 0 , 

t h a t i s , 

X(LpFq - Fp + q+ FpLq) = Fq. 

Since 

L'Tpkq ~ £p + q "*~ ^pljq ~ £p + q> 

we hstve, f i n a l l y , 
F4 FP 

(5 .10) ^ = i r — , y = - - ~ ~ . 
£p + q r P + q 

On the other hand, it follows from (5.3) and (5.8) that 

X(Fp+rFq + Fq + rFp) = FvFq. 

This g ives 

A = - *'** n ^ F ? 

Fp + rFq + Fq + rFp
 F

P + q' 

Hence, possibility (ii) is untenable and only the value of X and y furnished 
by (5.6) need be considered. 

Conversely, since (5.6) implies Xap - (1 + \iaq) = 0 = Xbp - (1 + y&*) , 
and this in turn implies (5*2), it is clear that (5.1) holds only if (5.6) is 
satisfied. 

This completes the proof of the following 
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Tk&OSim 4: Let p, q be fixed nonzero integers, p f q, and let r be an 
arbitrary integer. Then, 

n 

(5.11) XnFpn + r= Y^(l)vkFqk+r (n = 0, 1, 2, . . . ) , 
i f and only i f 

Tv7 77 

(5.12) A = ( -1 ) P TT^- 5 y = ( - D V 2 - . 
r ( ? - p r ? - p 

Thus, we have t h e e x p l i c i t i d e n t i t y 

(5.13) Fn
qFpn+r = X ) ( - l ) P ( " " k ) ( j ) F X : ^ , f c + 1 . (n = 0, 1, 2, . . . ) . 

k = 0 

We note that, as stated, (5.13) holds for arbitrary integers p, q9 r. In 
particular, for q = -p, (5„13) becomes 

(5.14) ^ P „ + , = i(-l)(p-1)("-k)(fc)^2"p-^-P*+r '(" = 0. 1. 2' • • • ) • 
k=0 

SECTION 6 

We turn finally to 

n 

(6.1) XnLpn + r = 2(j)v k£, k + , (n = 0, 1, 2, . . . ) . 

It follows from (6.1) that 

1 - Xapx 1 - A2?pa; 1 - (1 + y a q ) x 1 - (1 + \ibq)x 

Hence, 

( 6 . 2 ) ar(Xkapk - (1 + ]iaq)k) = -br(Xkbpk - (1 + y M ) k ) 
(fc = 0 , 1 , 2 , . . . ) . 

For /c = 1 , (6 .2 ) i m p l i e s 

(6 .3 ) X L p + r = L r + y ^ + P . 
As in §5, we again consider the two possibilities: 

(i) Xap = 1 + \iaq; 
(ii) Xap 1 1 + ya«. 

I t i s c l e a r from 

av{Xap - (1 + y a * ) ) + £r(A£P - (1 + y £ q ) ) = 0 

and ( i ) t h a t 

(6 .4 ) Xbp = 1 + y i * . 

Adding t o g e t h e r ( i ) and ( 6 . 4 ) , we ge t 

( 6 . 5 ) XLP = 2 + \xLq. 
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X(aqLp - avLn) = aq 

Again u s i n g ( i ) , 
JP 

which g ives 
F F 

(6 .6 ) X = ( - l ) p y ^ ~ , y = ( - D P ^ - , 
cq-p n q-p 

Assuming ( i i ) , we have 
ar(Xap - (1 + ]iaq)) = -b"(Xbp - (1 + \ibq)) 

ap(Xzalp - (1 + \xaq)2) = -br{X2bZp - (1 + ]ibq)2) 

a r ( X 3 a 3 p - (1 + p a ' ) 3 ) = -br(X3b3p - (1 + y&*) 3 ) . 

This g ive s 

Xap + (1 + \iaq) = Xbp + (1 + y&'?) 
(6 .7 ) 

A 2 a 2 p + A a P ( l + p a ? ) + ( l + p a ? ) 2 = X2Z>2p + Xbp (1 + \ibq) + (1 +pZ>?)2 . 

Then, exactly as in the previous section, we get 
j? v 

(6.8) X = — 2 - , y = P 
7? > H 7T 

On the other hand, by (6.3) and the first of (6.7), that is, 

\Fp = \iFq = 0, 
we get 

^(FqLp + r + Fp^q + r) = LqLr. 
This gives 

ijqhr> £a 

X = yj VlTT * T1- (̂ 0), 
^q-L'p+r ' -Fp^q + r ^p + q 

Hence, (ii) leads to a contradiction and only (i) need be considered. Since 
(6.6) implies (i), it is clear that (6.1) holds only if (6.6) is satisfied. 

We may state 

77ieo/i£m 5: Let p, q9 r be fixed nonzero integers, p ̂  q9 v =f 0. Then we 
have 

n 

(6.9) A"Lpn + r = ^(iykLqn + r {n = 0, 1, 2, ...) 
k = 0 

if and only if 

(6.10) A = (-Dp/^-, p = (-DP^-. 
r q - p r ^ - p 

Thus, we have 

n 

(6.1D Fq
nLpn+r = £ (-Vn-k(T)KFVpL

qn + P (» = 0, 1, 2, ...) 

for all p9 q9 r. 

R&maJik: Theorem 5 does not include Theorem 2 since, for r = 0, A, y may 
also take on the values (3.7). 
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SECTION 7 

The identity 
n 

(7-1} Lpn = Yl^1)k{k)Lp'kLPk (H = °' ls 2' "^ 
k = 0 

has been noted in the Introduction. This suggests the problem of finding se-
quences U = {uQ, ul9 u29 . ..} such that 

n 

<7'2> Un = ̂ (-Uk(k)<~kuk (n = °> 1» 2' "")' 

The sequence Z7 is not uniquely determined by (7.2). We shall assume that 
ul ^ 0. For n = 1, we have u1 = u 0u x - u l 5 so that u 0 = 2. For n = 2, we get 
u2 = UQII\ - 2u\ + uz. For n = 2???, m > 0, (7.2) reduces to 

2m-1 

(7.3) S(-l)fc(2feZ)"f'k"k = °  0" = 1, 2, 3, . . . ) . 
k = o 

For n = 2m - 1, (7.2) yields 
2w -2 

(7.4) 2u2 m.1-x;<- i>f c(2 mfc i)"?m"k"i"k ^ = i - 2 ' 3> • • • > • 
n 

k = 0 

k = Q 
n 

Un- sn = ^2(-l)k{k)ui'k(s^ -u^ 
k = 0 

2m -1 

(7.5) -2(S2m - u2m) = X > l ) f c ( 2
f e

m ) W r k ( ^ " u k ) . 
k=0 

Hence (7 .4 ) i s a consequence of t h e e a r l i e r r e l a t i o n s 

Sk = uk (k = 1 , 25 3 , . . . , 2m - 2 ) . 
In t h e nex t p l a c e , i f we pu t 

E x n 

Unrii9 

n- 0 
it follows from (7.2) that 

«*> • Eff £<-«*©<- v - £(-»'-.ff i ^ -
Thus, "=0 k = 0 n = 0 k=0 

G(x) = eUlXG(-x). 

In particular, the sequence (L 0, L p 9 L 2 p , ... }, with u1 = L p , satisfies 
(7.2); incidentally, a direct proof of (7.1) is easy. Hence, if we put 

Put 

Then k=° 

so that 

and so 2m-i 
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Z xn 
Lpn ^T ' nl 

we have 

(7.6) GL(x) = eu^xGL(-x) {ux = Lp). 
It then follows from (7.6) that 

F(a?) = G(x)/GL(x) = F(-aO. 

Thus, 

k = 0 

where the coefficients <?2, <? , <2g, ... are arbitrary. We have therefore,, 

(7.7) Un = 2 ^ (2^)e2k^p(n-2) 
2k<n 

for any sequence satisfying (7.2) with ax = Lp. 
This result also suggests a method for handling (7.2) when un is arbi-

trary. Put 

(7.8) ul = a + 3, 

where a, 3 are unrestricted otherwise. Then we have 
n 

S ( _ 1 ) ; c ( f e ) ( a + e)"~k(ak + ek) 
k=0 

k = 0 J = 0 k = 0 J = 0 

= EG)a-^E(-i)k(n^>i;G)°"-e'i;<-i) a)=«" -̂. 
j =o k = o s = o k = o 

Hence, if we define 

(7.9) un = a" + 3" (n = 0, 1, 2, . . . ) , 

it is clear that 
n 

(7.10) un = ̂ (-^(fe)*?"*"* (n = °' lj 2' ••")-
k = 0 

Thus (7.2) is satisfied with un defined by (7.9). 
We can now complete the proof of the following theorem exactly as for the 

special case u, = Lp. 
ThlOKOM 6: The sequence {uQ = 2, ul9 u2, ...} satisfies (7.10) if and 

only if 

(7.11) un = 2-J y2Ji)°2kun-2k (n = °> 1» 2» • • • ) , 
where a0 - 1 and c2, e^, c6, ... are arbitrary. An equivalent criterion is 

(7.12) un = an + Bn (w = 0, 1, 2, ...) 

for some fixed a, 3. 
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We remark that 
n 

aH = S^1)"(«)(a+ 3)n~V (n = 1, 2, 3, ...) 
k = 0 

is not correct. For example, 

(a + 3) - a = 3 
(a + 3)2 - 2(a + 3)a + a2 = 32. 

We shall prove 

n 

3"= J^(-Dk (?)(«+ 3)B"*ak 

n (7.13) < k;°  (n= 0, 1, 2, . . . ) . 

an = "y^C-1 ̂ k (n^f^ -L Q\^-kQk 
k=Q 

It suffices to prove the first of (7.13). We have 

£(-l)fc(£)(a+ B)-*a".^(-l)*(J)a*2(n^)a»-k-V 
k= 0 k = 0 j" = 0 

j = o k = o 

This completes the proof. Note that this result had occurred implicitly in 
the discussion preceding (7.10). 

It follows from (7.13) after multiplication by ar (or 3P) that 
n 

(7.14) (a$fun_r - E (-1)" (l)u?-kuk+T (n = 0, 1, 2, . . . ) , 
k = 0 

where now un = an + 3 n for all integral n. Similarly, we have 
n 

(7.15) -(a3)r^n_p = S(-l) k(fe)wr^ k + r (« = °> !> 2> •••>• 
k = 0 

where 
(7.16) vn=^ 

n _ on 

In both (7.14) and (7.16), v is an arbitrary integer. 
In the case of the Lucas and Fibonacci numbers, we can improve slightly 

on (7.14) and (7.16) by first taking a = ap, 3 = bp in (7.13) and then multi-
plying by av (or br) . Thus, we get 

(7.17) <-D*LPfl_, = E < - i > k u y , - v + , (" - °' x>2- •••> 
k = 0 

and 

(7.18) (-l)r-Vpn_r = £(-!)* (^"^V-K, (n = 0, 1, 2, ...), 
k = o 

where r is an arbitrary integer. 
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FIBONACCI CHR0M0T0L0GY OR HOW TO PAINT YOUR RABBIT 

MARJORIE BICKNELL-JOHNSON 
Wilcox High School, Santa Clara, California 95051 

Readers of this journal are aware that Fibonacci numbers have been used 
to generate musical compositions [1], [2], and that the Golden Section ratio 
has appeared repeatedly in art and architecture. However, that Fibonacci num-
bers can be used to select colors in planning a painting is less well-known 
and certainly an exciting application. 

One proceeds as follows, using a color wheel based upon the color theory 
of Johann Wolfgang von Goethe (1749-1832) and developed and extended by Fritz 
Faiss [3]. Construct a 24-color wheel by dividing a circle into 24 equal 
parts as in Figure 1. Let 1, 7, 13, and 19 be yellow, red, blue, and green, 
respectively. (In this system, green is both a primary color and a secondary 
color.) Halfway between yellow and red, place orange at 4, violet at 10, blue-
green at 16, and yellow-green at 22. The other colors must proceed by even 
graduations of hue. For example, 2 and 3 are both a yellow-orange, but 2 is 
a yellow-yellow-orange, while 3 is a more orange shade of yellow-orange. The 
closest colors to use are: (You must also use your eye.) 

1 Cadmium Yellow Light 
2 Cadmium Yellow Medium 
3 Cadmium Yellow Deep 
4 Cadmium Orange or Vermilion Orange 
5 Cadmium Red Light or Vermilion 
6 Cadmium Red Medium 
7 Cadmium Red Deep or Acra Red 
8 Alizarin Crimson Golden or Acra Crimson 
9 Rose Madder or Alizarin Crimson 

10 Thalo Violet or Acra Violet 
11 Cobalt Violet: 
12 Ultramarine Violet or Permanent Mauve or Dioxine Purple 
13 Ultramarine Blue 
14 French Ultramarine or Cobalt Blue 
15 Prussian Blue 
16 Thalo Blue or Phthalocyanine Blue or Cerulean Blue or 

Manganese Blue 
17 Thalo Blue 4- Thalo Green 
18 Thalo Green + Thalo Blue 
19 Thalo Green or Phthalocyanine Green 
20 Viridian 


