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1. INTRODUCTION
Layman [3] recalled the formulas [2]

(1.1) F,, = Z (Z)Fk

k=0

(1.2) 2, =Y (%)7s
k=0

(1.3) 3'F, = Z <Z)Fuk,
k=0

where, as usual, the F, are the Fibonacci numbers defined by

Fy=0, F,=1, F ., =F, +F _| (n>1).

As Layman remarks, the three identities suggest the possibility of a general
formula of which these are special instances. Several new sums are given in
[2]. Many additional sums occur in [1].

Layman does not obtain a satisfactory generalization; however, he does
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:

(1.4) 5"y = i:(’;)z”“kmk,
k=0
(1.5) 8"F,, = i(2)3”‘kF6k,
k=0
(1.6) Fao = (1" (7)) -2 Fays
k=0
(1.7) 5"F,, = (-1)”2(2)(-2)@5,{.

k=0

He notes also that each of the sums he obtains remains valid when F, is re-
placed by L, where the L, are the Lucas numbers defined by

Ly=2,L,=1,L,,, =L, +L,_, (u>1).
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In the present paper, we consider the following question. Let p, g be
fixed positive integers. We seek all pairs A, U such that

n

n .
(1.8) \'E,, = Z(@;u"]qu (n=0,1,2, ....
k=0
It is easily seen that p # g. We shall show that (1.8) holds if and only if
Fq Fp
(1.9) A= (-1 uo= (-1) .
F‘?"P, F‘?—P

Since (1.8) is equivalent to

1.10)  (-W)"F,, = i(;)(-x)kppk (n=0,1,2, ...,

k=0

we may assume that p < g. However, this is not necessary since we may take
F_, = (-1)*-'F,. Also, the final result is in fact for all Py g, P ¥ Q.
For the Lucas numbers, we consider

n

(1.11) X'Dp, = Z(z>uquk (n=0,1,2, ...).

k=0
We show that (1.11) holds if and only if A, Y satisfy (1.9) or
F Fp
(1.9)' A==t p=- .
Forq Fovgq

In the next place, if w denotes a root of z% =z + 1, we show that
n
1) W= 3 (BT =0, 1,2, .00,
k=0
if and only if A, u satisfy (1.9).

The stated results concerning (1.8) and (1.11) can be carried over to the

more general
14

@13 NFpar = 2 (F)W ks (=0, 1,2, 100
k=0

and
"

(1.14) N'Lppsn = Z(Z)Uk%kw n=0,1, 2, ...),
k=0

where r is an arbitrary integer. We show that (1.13) holds if and only if A,
U satisfy (1.9); thus, the result for (1.13) includes that for (1.8). How-
ever, (1.14), with » # 0, holds if and only if X, u satisfy (1.9); thus, the
result for (1.13) includes that for (1.8). But (1.14), with » # 0, holds if
and only if A, U satisfy (1.9); thus, the values (1.9)' for A, Yy apply only
in the case r = 0.

As for

n

D L Z(Z) T =0, 1, 2, ...),

k=0

it is obvious that this is equivalent to (1.12) for all r».
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The formulas (1.8), (1.11), (1.12), (1.13), (1.14) with A, u satisfying
(1.9) can all be written in such a way that they hold for all p, q. For ex-
ample, (1.8) becomes

1
n _ p(n-x)[(" n-k
(1.15)  E'Fpy = g (-1) (7)EF2kr,,.
=0

For p = g, this reduces to a mere tautology. However, for (1.11) with A,u
defined by (1.9), we have

n
n _ k(n -k
1.16) By = 90 D) BB iy
k=0
For g = p, this reduces to
n
(1.17) Lpn = Z(—l)k(Z)Lg_kka.
k=0

Note that (1.15) and (1.16) had been obtained in [1].
For some remarks concerning (1.17) see §7 below. In particular, the fol-
lowing pair of formulas is obtained:

(1.18) (-1)"Lpp_p = i(—l)k(Z)LZ'kkaw,
k=0
(1.19) D Py = i(—l)k(Z)LZ"‘Fpkw
k=0

where r is an arbitrary integer.
Formulas (1.18) and (1.19) differ from (1.13) and (1.14) in a rather es-
sential way. The former pair suggest the problem of determining A, M, C»r

such that
n
n
Z ('1)k( k)Ukka+r,
k=0

7

n
N Py = 2 D ()W s
k=0

CoX' Ly

and similarly for

where C, depends only on ». This is left for another paper.

SECTION 2
Let a, b denote the roots of 2?2 = x + 1. We recall that
no_ n
(2.1) P, =—“a—_—2—, Lp,=a"+Db".

Thus, the equation

@.2) N = 2 ()

becomes
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(2.3) A (aP” - pP"y = :i: (Z)uk(aqk - by,

k=0

Multiplying both sides of (2.3) by x and summing over n we get

1 _ 1 HZ::O o kizo(z>uk(aqk _ bqk)

1-2xPx 1- %
St - 3 (1)
k=0

[

I

n=0
. k, qk qk xk
- ™ - T —
k=0 (1 -2
- 1 1 _ 1
1-= 1 va'x 1 - wb’x
1l1-=x 1-x

Since

1 1 _ 1 _ 1
3
a-b\1-4% 1-0p% 1 - Lpz + (-1)P3z2
it follows that

AF, g
(2.4) 2 = : .
1 - Apx + (-1)FA%x* (1 - 2)? - uL,e(l - =) + (-1)7p’z?

For x = 0, this reduces to

(2.5) AF, = uF,.

Thus,

(2.6) 1= Mpx + (-1)P2%% = (1 - 2)? - uLee(l - o) + (-1)7p2z2.
Equating coefficients of x and x?, we get

(2.7) AL, = 2 + uLgq

and

(2.8) (-1)PA% = 1 + upg + (-1)%?,

respectively.

Now by (2.5) and (2.7), we have
MpFy = 2Fg + Wipl, = 2F, + AF,L

p—q»

so that

(2.9) ALpF, - F,Ly) = 2F,.

It is easily verified that

= q-1
(2.10) LyF, - FyLy = 2(-1)" "F,_q-
Hence, (2.9) yields
F F

2. A= (-1 = (-1)P—E£—;
(2.11) (-1 7 M (-1 7

q-p q-p



1978] SOME CLASSES OF FIBONACC! SUMS k15

the second equality is of course a consequence of (2.5).

It remains to consider the condition (2.8). We shall show that (2.8) is
implied by (2.11), or, what is the same, by (2.5) and (2.7). To do this with
a minimum of computation, note that (2.5), (2.7), (2.8) can be replaced by

(2.5)" Aa? - By = @ + pa?) - @+ wh,

2.7)’ A@P + bP) = (1 + ua?) + (1 + up?),

(2.8)' A (@b)? = (1 + pad) (1 + pb9),

respectively. Subtracting the square of (2.5)' from the square of (2.7), we
get (2.8)7,

We have therefore proved that (2.5) and (2.7) imply both (2.8) and (2.11).
Conversely, (2.11) implies (2.5) and (2.7). The first implication, (2.11)
(2.5) is dimmediate. As for (2.11) -+ (2.7), we have

p
L,F, - F,L, 2(-1FF, _,

= (..1)q - —_—
FQ—p q-p ’

ADp - ULg = (-1)7+

by (2.10). Hence, ALp - uLg = 2.
This completes the proof of the following:

Theorem 1: Let p, g be fixed positive integers, p # g. Then,

n
(2.12) N'F,, = Z(Z)“quk n=0,1,2, ...,
k=0
if and only if
p Fq
(2.13) A= (-1) 7

Fp
, W= D
q-p q9-p
Thus, we have the explicit identities

n
pn n _ N PR (7 n-k -
(2.14) -1 FF,, = RZ_S( 1) (k>Fqu_quk (n=0,1,2, ...
If we use the fuller notation A(p, g), U(p, g) for A, ¥ in (2.13), then,
P
u(gs p) = L
q-p
so that
(2.15) g, p) = -Alp, ).

In proving Theorem 1, we have not made any use of the positivity of p and
g. All that is required is that p and g are distinct nonzero integers. This
observation gives rise to additional identities. Replacing p by -p in (2.13)
we get

r ¥4 Fp
(2.16) >\(_p’ C]) = (-1) 7 » U(—P» q) =_F )
p+q p+gq
and (2.14) becomes
"
@0 B, = -3 COME)ERTER, =0, 1, 2, 0.
k=0

Comparison of (2.17) with (2.14) yields
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(2.18) (-1)P"" 1Z( 1)’”‘( ) b Py v Z( DD A s 8

(n=20,1, 2, ...;p #q).

Similarly,
Fq p
Mp, -@) = 7 — = (DPACp, ),
(2.19) e .
u@, - = (D= = D uC-p,

p+4q
and we again get (2.17).
Finally, the formulas

_ _ Fq _ p
Aep, =@) = 5= (D", @),
p+q
(2.20)

1]

u-p, -q) = (- l)q = -1 ", ¢

P+q
again lead to (2.14).

We remark that for ¢ = p + 1 and p + 2, (2.14) reduces to

(2.21)  FlF, Z< PO (VR )

and

-k
(2.22) Fp+2 pn Z( peee )( )F Flpe2)is

respectively.
SECTION 3

We now consider
n

(3.1) N'ipw = 2 (F)WeLan  m=0,1,2, .0,
k=0

where p, g are distinct nonzero integers. Since L, = a” + b", we have

A (aP" + pPT) = ‘i(’;)pk(a“ + by,

k=0

1 + 1 _ 5’: e i(z)uk(aqk + %)
n=0 k=0

1 - rafx 1 - AbPx

Hence,

so that
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2 - N 2 - (2 +uLyx
(3.2) =

1 - AMpz + LPA%% 1 - (2 + uLgdxe + (1 + uLg + (-1)%u?)x?
Equating coefficients and simplifying, we get

)\Lp =2 +ULq

(3.3)
(-1)PA% = 1 + ur, + (-T2

Coefficients of x? and of x°® both lead to the second of (3.3).
We can rewrite (3.3) in the form

Aa? + bP) = (1 + pa?) + (1 + wp?)
(3.4)
A2 (ab)? = (1 + pa?) (1 + pp?).
Squaring the first of (3.4) and subtracting four times the second, we get
)\z(ap — bp)z - UZ(CZQ - bQ)Z’
and therefore,
AF, = *uF,.
If we take AF, = ULg, then, by the first of (3.3),
MDpFq = 2F, + WL,F, = 2F, + AL F,,
that is,
(3.5) A(LpFy = LqFp) = 2Fg.
Since, by (2.10),
LpFq = LoFy, = 2(-1)PF, _,,
we get

( A= (1Pt (-1)P—E
3.6) = (-1 , H= (-1
Fqop Fq-p
On the other hand, if ALp = -uLg, then
AMLpFq + LgFp) = 2F,,
which reduces to
(3.7) A==, ) i
3. = = , = , u=-
Fpiq p. Fp+q
This completes the proof of

= u(-p, q).

Theorem 2: Let p, q be fixed nonzero integers, p # q. Then,

(3.8) N'L, = i ()W re  @=0,1,2, ..,

k=0

if and only if X and Y satisfy either (3.6) or (3.7).
Thus we have the explicit identities

n
(3.9) (-1P"FJL,, = Z(-l)P"(Z)FPRF;:’;qu m=0,1,2, ...)
k=0

and

n
N\ pkpn-k
(3.10)  F'Lpn = 3 (R )ER g (&
k=0 )

1l
o
—
N

.

N’
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Note that (3.9) becomes (3.10) if p is replaced by -p or g is replaced by
-q.
SECTION 4

Let w be a root of 2 = £ + 1 and consider

n

(4.1) AP =Zukw"k n=0,1,2, ...),
k=0

where p, g are fixed nonzero integers, p # g, and A and U are assumed to be
rational. Since (4.1) is simply

N'wP" = (1 + w?)™ n=0,1,2, ...),

it suffices to take n = 1:

(4.2) WP =1 + ww?.
Recall that
(4.3) w" = Fw+F, (n =0, 1, %2, ...),

so that (4.2) becomes
AMBw+ Fp 1) =1+ u(Fw + F,_y).
Since A and Y are assumed to be rational, we have

AF, = UFq
(4.4)
A%_1=]_+u%_r

Eliminating u, we get

MF,_F, - F,F ) = F,.

p-17q P q-1
It is easily verified that 7
_ p_°p
Fp_ F, - F,F,_, = (-1) F,_
and therefore,
Fq » Fp
(4.5) A= (D w= DY
q-p q-p
We state

Theorem 3: Let w denote a root of 2? = 2 + 1 and let p, g be fixed non-
zero integers, p # g. Then,

(4.6) WP =1+ w9,

where p and g are rational, if and only if (4.5) is satisfied. Hence, (4.6)
becomes

P - (_1)? q
(4.7) Fw (-1) Fq_p + pr .
It follows from (4.7) that
n
n . pn _ k(" pn-kp ., qk
Fqu™" = kz(_l)” (k)Fq—prw >
=0

and therefore we get both

"
i = n-k(n -kpk
(4.8) FFyp -k_S_ (% ) FrskekE,
=0
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and "
k(N -
R S
k=0

in agreement with (2.14) and (3.9). However, this does not prove Theorems 1
and 2.

SECTION 5

We now discuss

n
n
(5.1) Xann+T= Z(k)uquk+P (n = 09 1’ 2’ "’):
k=0

where p # ¢ but p, ¢, r are otherwise unrestricted. One would expect that
the parameters A, U depend on r as well as p and g. However, as will be seen
below, A and U are in fact independent of .

It follows from (5.1) that

a” ~ b” _ 1 a” _ b”
1-2Pe 1-upPe 1°-% 1 - valx 1 - ub?x
1 -2 1 -2
a’ b”

5
1-@+uDe 1- @+ wHe
so that

)

ar’z Aeq PRy - b”z AepPRgk = a"Z (1 +ua?kak - brz @+ .
k=0 k=0 k=0

k=0
Equating coefficients of x , we get
(5.2) a?(FaP* = (1 + pa®H*) = > (B2 - (1 + )
(k =0, 1, 2, ...).
For k = 1, (5.2) implies
(5.3) AFpyp = Fp + UFg o
We now consider separately two possibilities:

(i) XaP =1 + pa;
(ii) XaP # 1 + paf.

It is clear from
ar(Ma? = (1 + ua®)) = p*(W? - @ + wp?))
that (i) implies

(5.4) AP = 1+ bt
Subtracting (5.4) from (i), we get
(5.5) AFp = UFq.

Hence, again using (i),

(@’Fy - a?F))\ = F,.
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Since
a’Fy - a'F, = E—Eﬂ:—b(ap(aq - bY) - a%(a? - bP))
4P pPpq
a'h’ - a'b p
= a-p - (Wi
it follows that
(5.6) S S I R .
Fogop Fq-p

We now assume (ii). Take k=1, 2, 3 in (5.2):
a®(AaPf - (1 + w?) = p"(»? - @ + wh)
at(Ma®? - (1 +ua®D?) = p"(\%% - 1 + uwp)?)
a*(W3%a®f - (1 +ua®)?) = b7 - (1 + pp?)®).
Dividing the second and third by the first, we get

AP+ @+ wa?) = '+ @+ )
(5.7)
Ma®P+ aP(L + wa?) + (1 + ua®) = AP 42b (1 + wb?) + (1 + W

The first of (5.7) yields
(5.8) AFp + WFg = 0

while the second gives

2, - 2 =
(5.9) A sz + AP, + Au]«p+q+ 2uF, + uF,, = 0.
Multiplying (5.9) by Fy and eliminating u by means of (5.8), we get
2 2 2427 _
A szE; + XE%EQ - A F%Fp+q = 2MF,F, + M FpLg = 0,
that is,

MIpFy = Fpyq+ FyLg) = Fy.

Since
LpFqg = Fpyqt Fplq = Fpygs
we have, finally,
Fq Fyp
(5.10) =TT U= —= .
Fouq Fptq

On the other hand, it follows from (5.3) and (5.8) that
MEFparFq + FyyuFy) = FoFy.

This gives

F,F, F
A = r-p 4 q .
PpirFq + FgrnFy | Fyyy

Hence, possibility (ii) is untenable and only the value of A and p furnished
by (5.6) need be considered.

Conversely, since (5.6) implies XaP? - (1 + pa%) =0 = AbP - (1 + up®),
and this in turn implies (5.2), it is clear that (5.1) holds only if (5.6) is
satisfied.

This completes the proof of the following
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Theorem 4: Let p, q be fixed nonzero integers, p # g, and let r be an
arbitrary integer. Then,

1

(5.11) )‘ann+r= Z(Z)Uquk.,.p n=20,1, 2, ...),
if and only if k=0

Fq Fp
(5.12) A= (D5, u= Dy

F‘?'P FQ'P
Thus, we have the explicit identity

n
p(n=-k)( "N kpn=k

(5.13) FyFy oy = Z(—l) (n )(k)FpF;_quk” (n=0,1, 2, ...).

k=0

We note that, as stated, (5.13) holds for arbitrary integers p, g, r. In
particular, for g = -p, (5.13) becomes

n
- - n -
(5.14) FlFppse= 9, (<11 k)(k)pgpfp P ewe (0=0, 1,2, ...
k=0
SECTION 6
We turn finally to
7N
n
(6.1) MLy = Z(k)“quk“ (n=0,1,2,...).
k=0

It follows from (6.1) that

ar + b” _ a” + b

1-2Prx 1 -2 1-@A+padHe 1 - @@+ ppHe

Hence,
(6.2) a®(MaP* - (1 + pa?)k) = -p*(*pP* - (1 + ub9)k)
(k =0, 1, 2, ...).
For k = 1, (6.2) implies
(6.3) AL =L, + UL

p+r q+re
As in 85, we again consider the two possibilities:

(1) AaP =1+ ua%;
(i1) XaP # 1 + uaf.

It is clear from
at(AaP - (1 + pa?)) + b*(AbP - (L +ub?H) =0
and (i) that
(6.4) AP = 1 + upf.

Adding together (i) and (6.4), we get

(6.5) Mp = 2 + ul,.
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Again using (i),

Aa%Lp - a’Ly) = af - b7,
which gives

. B , F
6:6) A= (DPE ws (D,
Assuming (ii), we have

a’"(Aa? - (1 + pa?)) = -b"(Ap° - @ + up?))

a®(Z2a?? - (1 + ua®?) = -b*(A\%p2%F - (1 + pp?)?)

ar(Z3a® - (1 + pa??3) = -p"(A%p% - (1 + uwp?")?).

This gives

AaP + (1 + ua9 = AP + (@ + )
6.7)
A2a%P +aaP (L +ua®) + (L +pa®)? = A2b2P 4+ ApP (L +ubT) + (L + b 2.

Then, exactly as in the previous section, we get
F

F
_ q - _ p
(6'8) )\ - F ) o= F

p+q

prq
On the other hand, by (6.3) and the first of (6.7), that is,

AFp = uF, =0,
we get

X(Epr+r + E%Lq+r) = LqLy.
This gives
LqlLy Fq

= r # 0).
FgLpwr * FpLgsr g Fpeq 70

A

Hence, (ii) leads to a contradiction and only (i) need be considered. Since
(6.6) implies (i), it is clear that (6.1) holds only if (6.6) is satisfied.
We may state

Theorem 5: Let p, g, r be fixed nonzero integers, p # q, » # 0. Then we
have
n

(6.9) XL,y = Z(Z)uqu,H_r (n=0,1,2, ...
k=0
if and only if
F F
(6.10) A= (D, w= (DT
q-p q-p
Thus, we have
n
n _ -k(n kpn-k _
(6.11) FyLypyr = -n- (k>Fqul_qun+r (n=20,1,2, ...

k=0
for all p, g, ».

Remark: Theorem 5 does not include Theorem 2 since, for » = 0, A, U may
also take on the values (3.7).
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SECTION 7
The identity

(7.1) Ly, = i(—l)k(Z)L;"kka m=0,1,2, ...
=0

has been noted in the Introduction. This suggests the problem of finding se-
quences U = {u,, %y, Uy, ...} such that

(7.2) ", = zn:(—l)k(;é)u;‘_kuk (n=0,1,2, ...).
k=0

The sequence U is not uniquely determined by (7.2). We shall assume that
u, # 0. For n = 1, we have u; = uou; - u;, so that uy, = 2. For n = 2, we get
U, = ugu? - 2u% + u,. For n = 2m, m > 0, (7.2) reduces to

2m=1
(7.3) 2o ()Wt =0 m=1, 2,3, ...
k=0
For n = 2m - 1, (7.2) yields
2m -2
(7.4) 2uy = 9 D (), =1, 2, 5, ).
Put n k=0
S, = Z(—l)k (z\)u;"kuk.
Then k;o
U, = Z(—l)k(Z)u’f'kSk,
so that k=0 "
Uy = 5, = Z(—l)k(’;)u?‘wsk - uy)
and so k=0 om-1
(7.5) -2(S,, - u,,) = Z(—l)k(iﬂui’”‘k(sk - u).
k=0

Hence (7.4) is a consequence of the earlier relatiomns
Sy = Uy, (k=1, 2, 3, ..., 2m - 2).
In the next place, if we put

o

xn
“niy >

n=0

G(x)

it follows from (7.2) that

©

3 2 S e (P,
k=0

n=0

L (uyx)”

k=0

G(x)

Thus,
G(x) = e G(~x).

In particular, the sequence{Lo, Ly, Lyp, ...}, with u;, = Lp, satisfies
(7.2); incidentally, a direct proof of (7.1) is easy. Hence, if we put
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® o
G, (x) = ZLpn YR
n=0
we have
(7.6) G, (x) = " "G, () (u, = Lp).

It then follows from (7.6) that
F(x) = G(x) /G, (x) = F(-x).
Thus,

- 2k
F@) = s gt (2o = D)y

k=0
where the coefficients c,, ¢, Cg» -.. are arbitrary. We have therefore,
(7.7) we = 9 (2 )ent
. n 2k ) C2k p(n-2)
2k<n

for any sequence satisfying (7.2) with a; = Lp.
This result also suggests a method for handling (7.2) when u, is arbi-
trary. Put

(7.8) u; = o+ B,

where 0, B are unrestricted otherwise. Then we have

i(—l)k(’;)w + B R(ak + BY)
k=0 '

y A a n-k

: g(—l)k(z)ak;(n‘;k)an_k_j%r;(—l)k(z)sf; <n,;'k>a”‘k-a’ej
- =4 n s

- 2 (3o o () + L (D) e b (§)- o e
J=0 k=0 pyrd oyt

Hence, if we define
(7.9) U, = o + g" n=0,1, 2, ...),

it is clear that
n
n -
7.10) = 2 D ()i, (=0, 1,2, 0.
k=0

Thus (7.2) is satisfied with u, defined by (7.9).
We can now complete the proof of the following theorem exactly as for the
special case u; = L.

Theorem 6: The sequence {u, = 2, u;, u,, ...} satisfies (7.10) if and
only if

(7.11) in = 2 (Z”k)c?_kun_m (n=0,1,2, ...,

2k<n
where ¢, = 1 and ¢,, ¢,, ¢4, ... are arbitrary. An equivalent criterion is
(7.12) u, = o + p" n=0,1, 2, ...)

for some fixed o, B.
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We remark that

a® = i(—l)k(’;)(a + B) kK (n=1, 2, 3, ...)
k=0

is not correct. For example,

@+ B) -a=RB
(0 + B2 - 2(a+ Ra+ a? = g2

We shall prove

BVZ

?;(—m (%)co+ mmro

i(—l)k(2)<a+ B) "Tkgk
k=0

It suffices to prove the first of (7.13). We have
n=k\ n-x-dni
. o
2. (")

zn:(—l)k<2)(u+ B) " Tkak Zn:(—l)k(z>cx’<
k=0 =0 e
zn:(g-)@n—jﬁjini(_l)k<n;<j> = B".
k=0

Jj=0

(7.13)

OLn

n-k
0

it

This completes the proof. Note that this result had occurred implicitly in
the discussion preceding (7.10).
It follows from (7.13) after multiplication by a? (or B”) that

(7.18) @, = 2 D (), (=0, 1,2, L,
k=0

where now u, = 0" + B" for all integral n. Similarly, we have

"

(7.15) =By, = 2D (F)ui v, (r=0,1,2, .0,
where k=0

B a” - B"
(7.16) vn—————u_ 5

In both (7.14) and (7.16), » is an arbitrary integer.

In the case of the Lucas and Fibonacci numbers, we can improve slightly
on (7.14) and (7.16) by first taking o = af, B = bP in (7.13) and then multi-
plying by a? (or b*). Thus, we get

n
(7.17) 'L, _, = Z(—l)k(Z)L"‘kka” (n=0,1,2,...)
k=0
and
(71.18) (DT, = 9 CDM()E e, (=0, 1, 2, 100,
k=0

where r is an arbitrary integer.
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FIBONACCI CHROMOTOLOGY OR HOW TO PAINT YOUR RABBIT

MARJORIE BICKNELL-JOHNSON
Wilcox High School, Santa Clara, California 95051

Readers of this journal are aware that Fibonacci numbers have been used
to generate musical compositions [1], [2], and that the Golden Section ratio
has appeared repeatedly in art and architecture. However, that Fibonacci num-
bers can be used to select colors in planning a painting is less well-known
and certainly an exciting application.

One proceeds as follows, using a color wheel based upon the color theory
of Johann Wolfgang von Goethe (1749-1832) and developed and extended by Fritz
Faiss [3]. Construct a 24-color wheel by dividing a circle into 24 equal
parts as in Figure 1. Let 1, 7, 13, and 19 be yellow, red, blue, and green,
respectively. (In this system, green is both a primary color and a secondary
color.) Halfway between yellow and red, place orange at 4, violet at 10, blue-
green at 16, and yellow-green at 22. The other colors must proceed by even
graduations of hue. For example, 2 and 3 are both a yellow-orange, but 2 is
a yellow-yellow-orange, while 3 is a more orange shade of yellow-orange. The
closest colors to use are: (You must also use your eye.)

1 Cadmium Yellow Light
2 Cadmium Yellow Medium
3 Cadmium Yellow Deep
4  Cadmium Orange or Vermilion Orange
5 Cadmium Red Light or Vermilion
6 Cadmium Red Medium
7 Cadmium Red Deep or Acra Red
8 Alizarin Crimson Golden or Acra Crimson
9 Rose Madder or Alizarin Crimson
10 Thalo Violet or Acra Violet
11 Cobalt Violet
12 Ultramarine Violet or Permanent Mauve or Dioxine Purple
13 TUltramarine Blue
14 French Ultramarine or Cobalt Blue
15 Prussian Blue
16 Thalo Blue or Phthalocyanine Blue or Cerulean Blue or
Manganese Blue
17 Thalo Blue + Thalo Green
18 Thalo Green + Thalo Blue
19 Thalo Green or Phthalocyanine Green
20 Viridian



