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by Lemma 4, D = 1. If p = 21 or 29 (mod 40), then o\p - 1 implies that O ^ 0 
(mod 8). By Lemma 4, D ^ 2. This concludes the proof of the second part of 
the theorem. By Theorems 2 and 6, a formula for D(n) is obtained: 

[D(2r° )p(2"°  ), 5(pMp(p'i), ..., 2?(pir»)p(p2,«)] 
DM = 1 I 1 * . 

[p(2r° )5 p(p^), ..., p(p*")] 

For an odd prime p, we have, by Theorems 3 and 7, 

<7(pr)/p(pr) = pr-8cr(p)/pr-*p(p) = p*-sa(p)/p(p). 

Since this value is either 1, 2, or 4, it must be the case that s = t, and 
hence, D(pr) = Dip). The formula above reduces to 

[D(2r° )p(2r»), D(p )p(p ), ..., 0(p )p(p )] 
Din) = l- X- = ^ — . 

[p(2r° ), p(pr), ..., p(pm)] 
A routine checking of all cases—using Lemma 4, the formula above, and the 
formulas for o(2T) and p(2P)—-verifies the remainder of Theorem 8. • 

Theorem 9 is now an immediate consequence of Theorems 4 and 8. 

4., RELATED TOPICS 

Several questions remain open. We would like to know, for example, whe-
ther a formula for D(p) is possible when p = 1 or 9 (mod 20). 

One may also ask whether 0(p2) ± 0(p) for all odd primes p. If so, our 
formulas of Theorems 3 and 7 would be simplified so that s = t = 1. This 
question has been asked earlier by D. D. Wall [6], Penny & Pomerance claim 
to have verified it for p <_ 177,409 [4]. Using Theorem 1, the conjecture is 
equivalent to ep 2 _ 1 ^ 1 in Z*2[/5 ] . A similar equality 2P~1 = 1 in Zp has 
been extensively studied, and the first counterexample is p = 1093. The an-
alogy between the two makes the existence of a large counterexample to o(p ) 
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CONGRUENT PRIMES OF FORM (8r + l) 

J. A. H. HUNTER 

An integer e is congruent if there are known integral solutions for the 
system X2 - eY2 = Z2, and X2 + el2 = Z2. At present, we can be sure that a 
particular number is congruent only if corresponding X, Y values have been 
determined. 
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However, it has been stated and accepted that integers of certain forms 
cannot be congruent. Proofs exist for most of those excluding conditions, but 
not for all—no counterexamples having been discovered as regards the latter. 
For example, a prime of form (8P + 3 ) , or the product of two such primes, 
cannot be congruent. 

L. Bastien and others have stated that a prime of form (Sr + 1) , repre-
sentable as (k + t ) cannot be congruent if (k + t) is not a quadratic resi-
due of that prime. But no proof of this has been known to exist in the lit-
erature. 

The necessary proof will be developed in this paper. 
We first show that the situations regarding primes of form (Sr 4- 1), and 

those of form (Sr + 5), are not the same. For this we use the Collins analy-
sis method. 

It is well known that every congruent number must be of form uv(u2 - V2)/ 
g2. Then, if e be a prime of form (Sr + 5) or (Sr + 1), for congruent e we 
must have solutions to uv(u2 - V2) = eg2: from which it follows that one of 
u, V, (u - v) , (u + v) must be ea2, say, and the other three must all be 
squares. 

Consider each of the four possibilities. 

(1) u + v = ea2, u -
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both possible for e = Sr + 1 and for e = Sr + 5. 

Hence, this case (1) applies to e = Sr + 1, but not to e = Sr + 5. 

(2) u - v = ea2 , u + v = b2, u = o2, y = d2. 

Then, &2 - 2c2 = -ea2: 
possible with e = 8P + 1; impossible with e = 8P + 5. 
Similarly, &2 - 2d"2 = ea2: 
possible with e = 8r + 1; impossible with e = Sr + 5. 

Also, o2 - d2 = ea2 , and c2 + d2 = &2: 
both possible for e = 8r + 1 and for e = Sr + 5. 
Hence, this case (2) applies to e = Sr + 1, but not to e = Sr + 5. 

(3) u = ea2, u + y = 2?2, u-t> = c2, v = d2. 

Then, &2 + e2 = lea2, Z?2 - c2 = 2d2, b2 - d2 = ea2, and e2 + d2 = ea2: 
All possible for both e = Sr + 1 and e = 8P + 5. 

Hence, this case (3) applies to both. 

(4) v = ea2, u + y = & 2 , u - y = e 2 , u = d2. 

Then, fr2 - c2 = 2ea2,&2 + a2 = 2d2, b2 - d2 = ea2, and d2 - c2 = ea2: 
All possible for both e = 8r + 1 and e = 8P + 5. 

Hence, this case (4) applies to both. 

So, for e = 8r + 5, we have possible: 
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Case 

Case 

Case 

(4) 

(2) 

(4) 

x2 + y2 = lz2 \ 
x2 - y2 = lew2) 

x2 + y2 = z2 \ 
2 2 2 ( 

x - y = ew ) 
x2 + y2 = 2z2 1 
x2 - y2 = lew2 I 

Case (3) x2 + y2 = lez2\ 
x2 - y2 = lw2 j 

But, for e = 8r + 1, we have possible: 

Case (1) x2 + y2 = es2 

2 2 2 
ar - 2/ = ZJ 

Case (3) x2 + y2 = 2g;s2 

x2 - y2 = lw2 

We now show that each of the subsidiary-equation systems (1) , (2) , and 
(3) will provide a solution for the system (4) for any congruent number prime 
(8P + 1). 

From (1) to (4): 

Say x2 + y2 = ez2, x2 - y2 = w2, and A2 + B2 = 1C2, A2 - B2 = 2e£2. 

Setting 4 = xh + 2#2z/2 - z/1*, B = x4 - 2#2z/2 - z/4, we have 

^2 + B2 = l(xk + z/)2, A2 - B2 = le • (2xzysu)2. 

As an example, 

52 + 42 = 41 • 12\ 11692 + 4312 = 2 • 8812 • i 2 } 52 - 42 = 32 j 11692 - 4312 = 2 • 41 • 1202! 

From (2) to (4): 

Say x2 + y2 = z2, x2 - y2 = ew2, and A2 + B2 = 2C2, A2 - B2 = 2eB2. 

Setting i4 = xh + lx2y2 - yh^ B = xh - lx2y2 - y h
9 we have 

A2 + B2 = l(xh + y1*)2, A2 - B2 = le * (Ixyzw)2. 

As an 

From 

Say x 

exampli 

212 + 
212 -
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2 + zy2 
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= lez2 

292 

41 

, x2 

A 3872812 + 3183192 = 2 • 3544812 

3872812 - 3183192 = 2 • 41 • 243602 

y2 = w2, and A2 + B2 = 2C2, A2 - B2 = 2 ^ 2 . 

Setting A = O s 2 ) 2 + 2es2u2 - w* 9 B = (es2)2 - lez2w2 - Wh, we have 

A2 + B2 = 2[(es2)2 + z/]2, ^2 - B2 = 2e • (Ixyzw)2. 

As an example, 

33z + 31z = 82 
332 - 312 = 2 

• 52) 11777292 + 9153292 = 2 • 10547212 \ 
• 82 J 11777292 - 9153292 = 2 • 41 • 818402/ 

We may also consider the system (4) itself: 

Say x2 + y2 = 2s2, x2 - y2 = lew2 . 

From the first of the two equations we require 

x = u2 + 2ut; - v2
 9 y = u2 - luv - v2

 9 z = u2 + v2. 

Then x2 - y2 = (2u2 - lv2)buv, 
whence, kuviu2 - V2) = eix?2, which we know has solutions if e is a congru-
ent number. 
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Now, having shown that: each of the four possible systems of subsidiary 
equasions, for prime e of form Sr + 1, must have solutions if e is to be con-
gruent—and that system (4) is linked to each of the other three systems—a 
proof that any one of the four systems will not have solutions for any parti-
cular value of e must be proof that no other of the four systems can have 
solutions. Accordingly, we now show that e cannot be congruent if e = k + 
t 2 , and (k + t) is not a quadratic residue of e. For this we investigate the 
subsidiary-equation system (1). 

Say e is a prime of form (Sr + 1), represented uniquely as k + t . 
We have the system: x2 + y2 = ez2, x2 - y2 = w2. Thence, 

(kz)2 = x2 + y2 - (tz)2, 

with solution 

kz = a2 + b2 - c2 ) x = a2 - b2 + o2 

hence, 

making 

whence, 

so 

tz = lao ) y = lab 

Ikac = ta2 + tb2 - to2, 

t2o2 + Iktac - t2a2 = t2b2 

(to + ka)2 - (ka)2 - (ta)2 = (tb)'' 

(to + ka)2 - e a 2 = (tb)2, 

(M) 

fca = 2fc???n ) tb = m2 —2 

with solution 

£c + fca = m2 + en2( to = mz - Ikmn + en^ 
2 

en 

Without loss of generality, that becomes 

a = Itmn, b = mz - en2, o = m2 - Ikmn + en2. 

Substituting in (M), and omitting the common term kmn, we get 

whence 

and 

x = km2 - lemn + ken2, y = t(m2 - en2), 

x + y = (k + t )w 2 - 2e/??n + (fc - t)2 

x - z/ = (k - t )m 2 - 2ewn + (k + t ) 2 . 

Now, since we have x + yz = es2, with g an odd prime, x and y cannot be of 
same parity. Hence, each of (x + y) and (x - y) must be a square. 

So, say, x + y = p2. Then, 

[(k + t)m - en]2 -le(tn)2 = (k + t)p2, 

which is possible only if (k + t) is a quadratic residue of e. 
That completes the proof that a prime of form (8r + 1), uniquely repre-

sented as (k2 + t2), cannot be congruent if (k + t) is a quadratic nonresidue 
of e. 

BIBLIOGRAPHY 

L. Bastien, Nombres Congruents, lfIntermediare des Mathematiciens, Vol. 22, 
(1915). 

A. H. Beiler, Recreations in the Theory of Numbers (1966), pp. 155-157. 



1978] SOME CLASSES OF FIBONACCI SUMS 411 

Matthew Collins, A Tract on the Possible and Impossible Cases of Quadratic 
Duplicate Equalities (Dublin: Trinity College, 1858). 

A. Gerardin, Nombres Congruents, 1?Intermediare des Mathematiciens, Vol. 22, 
(1915). 

S. Roberts, Proceedings of the London Mathematical Society, Vol. 11 (1879). 

SOME CLASSES OF FIBONACCI SUMS 

LEONARD CARLITZ 
Duke University, Durham, North Carolina 27706 

1. INTRODUCTION 

Layman [3] recalled the formulas [2] 

n 

(i.D *2„ - £ (UK 
k = 0 

(1.2) 2"F2n = £ ( ? K » 
k = 0 

a-3) 3 » F 2 B - £ ( J ) V , 
k = 0 

where, as usual, the Fn are the Fibonacci numbers defined by 

F0 = 0, Fx = 1, Fn + 1 = Fn + Fn_x ( n ^ l ) . 

As Layman remarks, the three identities suggest the possibility of a general 
formula of which these are special instances. Several new sums are given in 
[2], Many additional sums occur in [1]. 

Layman does not obtain a satisfactory generalization; however, he does 
obtain a sequence of sums that include (1.1), (1.2), and (1.3). In particu-
lar, the following elegant formulas are proved:: 

(1.4) 5"F2n = i2(l)2"-kF5k, 
k= 0 

n 

(1.5) 8nF2n = £(j)3"- k F 6 k , 
k= o 

n 

(1.6) F3n = (-DnS(^)(-2)^> 
k= 0 
n 

(1.7) 5nF3n = (-irJ^(l)(-2)kF5k. 
k = o 

He notes also that each of the sums he obtains remains valid when Fn is re-
placed by Ln, where the Ln are the Lucas numbers defined by 

L0 = 2, Lx = 1, Ln+1 = Ln+Ln_x (n > 1). 


