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A. INTRODUCTION 

Let Fn be the nth term in the Fibonacci series defined by 

F = 0 F = 1 F = F + F 

and let Ln be the nth term in the Lucas series defined by 

£0 = 2, Ll = 1, L n + 2 = L„+1 +L„. 

In a previous paper [3], H. London and the present author considered the 
problem of finding all the Nth powers in the Lucas and Fibonacci series. It 
was shown that the problem reduces to solving certain Diophantine equations, 
and all the cubes in both series were found. However, the problem of finding 
all the cubes in the Fibonacci sequence depended upon the solutions of the 
equations y2 ± 100 = x3, and the finding of all these solutions is quite a 
difficult matter. 

In the present paper we first present a more elementary proof of this 
fact which does not depend on the solution of y2 ± 100 = x3. We then show 
that if p is a prime and p >_ 5, then L3k and L2k are never pth powers. Fur-
ther, we show that if Fztk is a pth power then t <. 1, and we find all the 5th 
powers in the sequence F2m. Finally, we close with some discussion of Lucas 
numbers of the form yp + 1. 

In our work we shall require the following theorems, which we state with-
out proof: 

TkzoHdm 1: The Lucas and Fibonacci numbers satisfy the relations 

L2
n - 5F2 = 4(-l)* and LmFm = F2m. 

lh(L0K<m 1 (Nagell [6]): The equation Ax3 + By3 = C, where 3J(AB if C = 3 
has at most one solution in nonzero integers (u9 v ) . There is a unique ex-
ception for the equation x3 + 2y3 = 3, which has exactly the two solutions 
(u, v) = (1, 1) and (-5, 4). 

T/iea/iem 3 (Nagell [7, p. 28]): If n is an odd integer >_ 3, A is a square-
free integer >_ 1, and the class number of the field Q(/^A) is not divisible 
by n then the equation Ax2 + 1 = yn has no solutions in integers x and y for 
y odd and >_ 1 apart from x = ±11, y = 3 for 4 = 2 and n = 5. 

Tfieô em 4 (Nagell [7, p. 29]): Let n be an odd integer >. 3 and let A be 
a square-free integer _> 3. If the class number of the field Q{/^-A) is not 
divisible by n, the equation Ax2 + 4 = yn has no solutions in odd integers A9 
x, and y, 

Thzotim 5 (Af Ekenstam [1], p. 5]): Let £ be the fundamental unit of the 
ring R(/m). If N(e) = -1, the equation x2n - My2n = 1 has no integer solu-
tions with y ^ 0. 

Tfieô em 6 [5, p. 301]: Let p be an odd prime. Then the equation y2 + 1 
= xp is impossible for x > 1. 

451 
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B. CUBES IN THE LUCAS SEQUENCE 

By Theorem 1, we have 

(1) L2
n - 5F2 = 4(-l)n. 

If Ln = y 3 , Fn = x, we get 
y6 - 5x2 = 4(-l)n 

with w > 0 and x > 0. Suppose first n is even, then we get 

y 6 - 4 = 5x2. 
If 2/ is even, this equation is impossible mod 32. Thus, y is odd, and 

(y3 + 2)(y3 - 2) = x2 

with 

(y3 + 2, y3 - 2) = 1; 

this implies that either 

( y3 + 2 = u2 

\ y3 - 2 = 5vz 

or , 

\ y 3
 + 2 = 5f 

\y3 - 2 = v2. 
But it is well known (see, e.g., [9], pp. 399-400) that the only solution 

of the equation y3 + 2 == u2 is y = -1, u = 1. This, however, does not yield 
any value for V. Further, the equation y3 - 2 = v2 has only the solution 
V = ±5, y = 3. But this does not yield a value for u. Therefore, there are 
no cubes in the sequence L2m-

Note: This result also follows immediately from Theorem 5 since the class 
number of Q(/5) is 1. 

Next, suppose n is odd, then we get 

(2) 5x2 - A = yK 
If y is even, this equation is impossible mod 32. Thus x and y are odd, and 
(2) reduces to 

(3) 5x2 - 4 = u3, 
with u a square. Equation (3) may be written 

(2 + /5#)(2 - /5x) = u3, 

and since x is odd, 

(2 + /5x9 2 - /5x) = 1. 

Thus we conclude 

2 + /B* = (^^)3 

(5) 2 + /5*= (^^y(k+^y 
(4) 

or 

Equation (4) yields 

3a2b + 5£3 = 8, 
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which, in turn, yields 

a = b = 1, v = 1. 
To solve (5), we note that 

fa + b/5 \ . 2 
I 2 / = u» i.e., a N I " ' """ ) = u9 i.e., a'1 - 5b2 = 4w. 

Since u is odd, a and b are odd, thus ( ~ 1 is of the form S + 2V5", with 
5 even and T odd. And \ / 

'X ± £ \ {S + TS5) 

can never be of the form A + B/5. Thus, (5) is impossible. We have proved 

TkzoSl&m 7: The only cube in the Lucas sequence is Lj = 1. 

C. CUBES IN THE FIBONACCI SEQUENCE 

First, suppose m is even. Then F2n = x3 implies FnLn = x3. If n f 0 (mod 
3), (Fn, Ln) = 1. Thus, Ln = t3 and n = 1. 

If n = 0 (mod 3), (Fn , Ln) = 2 and either: 

a. Ln Is a cube , which i s i m p o s s i b l e ; 
b . Ln = 2 s 3 , F = 42/3; or 
c . Ln = 4 s 3 , F = 2z/3. 

We now use equation (1) and first suppose n even. Then case (b) reduces to 

z3 - 20y3 = 1, 

with y and z squares. By Theorem 2, the only solutions of this equation are 
z = 1, y = 0, and z = -19, y = -7. Of these, only the first yields a sqaure 
for z and we get n = 0. Case (c) reduces to solving 

4s3 - 5y3 = 1, 

with y and s squares. Again, by Theorem 2, the only solution of this equa-
tion is z = -1, y = -1, which does not yield a square value for z. If n is 
odd, we get the two equations 

z3 - 20y3 = -1 and 4s3 - 5y3 = -1 

with z and zy squares. By the results above, the only solutions of these two 
equations are (s, y) = (-1, 0), (19, 7), and (1, 1). Of these, only the last 
yields a square value of z and we get n - 3. Thus, the only cubes in the se-
quence Fln are FQ = 0, F2 = 1, and Fs = 8. 

If 772 is odd, and Fm = x3
 9 Fm cannot be even since then (1) yields 

Ll - 5xs = -4, 
which is impossible (mod 32). Thus, the problem reduces to 

(6) 10y3 - 8 = 2x2
9 

with x.and y odd. But (6) was solved completely in [4, pp. 107-110], We out-
line the solution here. Let 03 = 10, where 0 is real. We use the fact that 
Z[0] is a unique factorization domain and apply ideal factorization theory to 
reduce this problem to 

(7) yd - 2 = (-2 + 6) (a + fee + g e 2 \ 
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and three other equations, all of which may be proved impossible by congru-
ence conditions. 

To solve (7), we equate coefficients of 0 and 02 to get 

(8) a2 + 20bc - 5b2 - Wac = 9, 

and 

(9) b2 + 2ac = ab + 5c2. 

Equation (9) may be written 

(6 + 2c - a)(b - 2c) = c2 , 

and (8) and (9) yield a odd, b even, and c even. Thus, we conclude 

b - a + 2c = dh\ 
(10) b - 2c = kdh\ 

c - 2dh1h2e 
where e = ±1, d, h19 h2 are rational integers, and d > 0. If we solve (10) 
for a, b9 c and substitute in (8) we get 

hh + 4ft*7z2e - 2 4 f t ^ - 1 6 / z ^ e - 64/z!j = 9Id2, 

which reduces to 

(11) uh - 30u2v2 + 40m;3 - 15vh = 9Id2. 

If d - 1, (11) is impossible (mod 5). If d = 3, (11) may be written 

(u - 5v)(u3 + 5u2v - 5uv2 + 15y3) = 1, 

and from this it follows easily that the only integer solutions of (11) are 
(u, V) = (±1, 0). Thus, we have: 

Th<LQHdm 8: The only cubes in the Fibonacci sequence are 

FQ = 0, Fl = F2 = 1, and F6 = 8. 

D. HIGHER POWERS IN THE LUCAS AND FIBONACCI SEQUENCES 

In this section, we investigate the problem of finding all pth powers in 
the Fibonacci and Lucas sequences, where p is a prime and p .> 5. We show 
that L3n and L2n are never pth powers, and that if F t is a pth power, then 
t = 0 or 1. We conclude by finding all the 5th powers in the sequence Fln. 

Suppose Ln = xp; then equation (1) yields 

X*P _ 5j?2 = 4(-l)n. 

If n = 0 (mod 3), x and F2n are even, and this equation is impossible (mod 
32) regardless of the parity of n. 

Suppose further that n = 2m, m % 0 (mod 3); then (1) yields 

5F2 + 4 = x2?, 

with x and Fm odd. Since the class number of §(/̂ 3") is 2, this equation has 
no solutions with Fm odd. Thus, we have: 

Tko.OSi2Jfn 9: L3k and L2k are never pth powers for any k. Finally, if n is 
odd, n ^ 0 (mod 3), we have to solve 

5y2 - 4 = ar2p. 
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Unfortunately, known methods of treating this equation lead to the solution 
of irreducible equations. Thus, it is quite difficult to solve. 

Now let us suppose F„ = xp. If n = 3 (mod 6), Fn is even and Equation 
(1) becomes 

L2
n - 5x2p = -4, 

which is impossible (mod 32). Thus, F&k + 3 i s n e v e r a Pt n power for any k. 
Now we prove: 

IhdQKm 10: If F6k is a pth power, then k = 0. 

VKQOfa: Let m = 3k 9 then (Fm, Lm) = 2, and since L$k is not a pth power, 
we conclude: 

a. ( Lm = 2MP 

or 

b. JL m = 2 r p - V 

with u and i? odd, m even, and r >_ 1. 
Now note that m cannot be odd in either case, since then (1) yields 

L2
m - 5F2 = -4 = L2 - 5 • 2 V p for some integer t , 

which is impossible (mod 32). 
If we substitute Fm - 2vp in (1), case (b) reduces to 

(12) x2 - 1 = 5v2p, 

since m is even. If v is odd, (12) is impossible (mod 8). Thus, x is odd, 
V is even, and (12) yields 

u2p 

i.e., 
U
2P _ 5V*P = i. 

Since the fundamental unit of Z[l, /!"] is 2 + 5 and/i/(2 + /J) = -1, this 
equation has no solution for v 4- 0, by Theorem 5. The solution V - 0 yields 
LQ = 2 and p = 2, which is impossible. Thus, F6k ^ 2vp for any k 4 0. 

To solve case (a), suppose m ^ 0 and m = 2ti, & odd, £ = 0 (mod 3). Then 

Since F2t-\l ^ 2?;p and Ĵ *-1*, i s n o t a P1-*1 Power5 w e conclude 

F2t-lg - 2 z;l5 

with wx and V1 odd. By continuing this process, we eventually get 

F = yp for some s and y odd, 

F% - yp for 2/ odd, or 

F£ = 2syp for some s and y odd. 

tf + 
2 

1 

1 
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Since F2
8i an^ Fi a r e even if I = 0 (mod 3), the first two of these equations 

are impossible. 
To settle the third, note that we have 

Ft-2'y* 

with I odd, & = 0 (mod 3) and # and 2/ odd. Then (1) yields 

x2? - 5 • 4s"Vp = -1. 
If s > 1, this equation is impossible mod 20; if s = 1, we get 

X2P - 5l/2P = -1, 

which is impossible mod 4, since x and y are odd. Thus, m = 0. 
Next, suppose m f 0 (mod 3), and F2m is a pth power. Then 

^2m = FmLmi (Fm J ^m) = ! 

and i^ and Lm are both pth powers. This enables us to prove the following 
result: 

Tk2.0h.QM 11: If F2tm is a pth power, m odd, w? j£ 0 (mod 3), then t <_ 1. 

Vh.00^: Suppose ^2t is a pth power with m odd, m $ 0 (mod 3) and £ > 1. 
Then 

^ ' / n " F2t-1mL2t-lm 

and both L2t-\ and F2t-i a r e P1-*1 Powers« Further, 

^V^m = F 2 t " 2 m L 2 t - 2 m > 
and both F2t-zm and L2t-zm are powers. By continuing this process, we even-
tually get 

F = F L 
and both F2 and L are pth powers. This is impossible by Theorem 9, and 
thus t £ l.m 

If m is odd, m $ 0 (mod 3) and F2m is a pth power, then 

F2m = FmLm 

and bo th Fm and Lm a r e p t h powers . Thus, we must so lve 

(13) x2? - 5z/2P = - 4 . 
Unfortunately, it seems quite difficult to solve this equation for arbitrary 
p. We shall g'ive the solution for p = 5 presently, and shall return to (13) 
in a future paper. 

Finally, if m is odd and Fm = xp, we have to solve 

x2p+ 4 = 5y2p , 
with y odd. Again, the solution of this equation leads to irreducible equa-
tions and is thus quite difficult to solve. To conclude this section, we prove 

Tho.OH.Qjm 12: The only 5th power in the sequence F2m is F2 = 1. 

VKOO^: if we substitute p = 5 in (13), it reduces to 
(14) x5 + 5z/5 = 4, 

and we must prove that the only integer solution of this equation is x = -1, 
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y = 1. To this end, we consider the field S(9) , where G5 = 5. We find that 
an integral basis is (1, 8, 92, 93, 94) and that a pair of fundamental units 
is given by 

e1 = 1 - 10 - 592 + 363 + 4 9 \ 

e2 = -24 + 159 - 562 - 203 + 5Qk. 

Since (2, -1 + 9)2 = (-1 + 9), the only ideal of norm 4 is (-1 + 9). Thus, 
(14) reduces to 

(15) u + vQ = (-1 + 9)e™e:2\ 

We now use Skolemfs method [8]. We find 

e? = 1 + 55x 
with 

?! = 393 + 494 + 5A 
and 

4 = i + 5?2 
with 

52 = 393 + 5B, 
where A and B are elements of Z[9]. 

If we write m - 5u + r9 n = 5v + s and treat (15) as a congruence (mod 5) , 
we find that it holds only for r = s = 0. Thus, (15) may be written 

u + vQ = (-1 + 9)(1 + 55i)w(l + 5?2)y 

= (-1 + 9)[1 + 5(u^ + z;?2) + . . . ] . 

Now we equate the coefficients of 93 and 9̂  to 0 and get 

-3w + 3v + 0(5) = 0, 

-w + 3v + 0(5) = 0. 

1-3 3| 
Since 2 0 (mod 5), 

|-1 31 
the equation 

u + vQ + wQ2 = (-1 + 9)e*e* 

has no solution except m = n = 0, when 777 = n = 0 (mod 5), by a result of Sko-
lem [8] and Avanesov [2], Thus, the only solution of (15) Is m = n = 0, and 
the result follows. 

E. LUCAS NUMBERS OF THE FORM yp + 1 

For our final result, we prove 

ThdOtim 13: Let p be an odd prime. If L2m = yp + 1, then m = 0. 

P/ioofi: Again, we use (1). We set Llm = yp + 1, F2m = x, and get 

(yp + l) 2 - 4 = 5x2, 
i.e. , 

y2p + 2yp - 3 = 5x2, 
i.e. , 

(yp + 3)(2/P - 1) = 5x2. 
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The GDC of yp 4- 3 and yp - 1 divides 4. If y is even, both these numbers are 
relatively prime, and we get 

\ yP - 1 = 5v2, 
or 

U P + 3 = 5w2, 

\yP - 1 = u2. 

Since 1/ is even, both these systems are impossible (mod 8). 
Suppose next that y = 3 (mod 4). Then (yp + 3, yp - 1) = 2, and we get 

( yP + 3 = 10u2, 

\yP - 1 = 2y2. 

By Theorem 3, the equation y - 1 = IQu2 has no solution with y odd for y ^ 1 
since the class number of Q(V-±0) is 2. But 2/ = 1 contradicts y = 3 (mod 4). 
Further, z/p - 1 = 2v has no solution with y odd except y = 1, t> = 0, and 2/ = 
3, V = ±11, p = 5. But z/ = 3 does not yield a value for u. 

Finally, if y = 1 (mod 4), (yp + 3, zyp - 1) = 4, and we get 

yp + 3 = 20z/, 

2yP - 1 = 4^2, 

2/P + 3 = 4u2, 

2/P - 1 = 20y2. 

By Theorem 6, yp - 1 = 4^2 has no integer solution except y = 1, v = 0. 
However, this does not yield a value for u. By Theorem 3, the only solution 
of yp - 1 = 20t>2 with y odd is z/ = 1, v = 0, and we get 

y = 1, u = 1, and a? = 0. 

The result follows. 
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GENERALIZED TWO-PILE FIBONACCI NIM 

JIM FLANIGAN 
University of California at Los Angeles, Los Angeles, CA 90024 

1. INTRODUCTION 

Consider a take-away game with one pile of chips. Two players alternate-
ly remove a positive number of chips from the pile. A player may remove from 
1 to f(t) chips on his move, t being the number removed by his opponent on 
the previous move. The last player able to move wins. 

In 1963, Whinihan [3] revealed winning strategies for the case when f(t) -
It, the so-called Fibonacci Nim. In 1970, Schwenk [2] solved all games for / 
nondecreasing and fit) _> t \/t. In 1977, Epp & Ferguson [1] extended the solu-
tion to the class where f is nondecreasing and fil) >_ 1. 

Recently, Ferguson solved a two-pile analogue of Fibonacci Nim. This mo-
tivated the author to investigate take-away games with more than one pile of 
chips. In this paper, winning strategies are presented for a class of two-
pile take-away games which generalize two-pile Fibonacci Nim. 

2. THE TWO-PILE GAME 

Play begins with two piles containing m and mf chips and a positive in-
teger w. Player I selects a pile and removes from 1 to w chips. Suppose t 
chips are taken. Player II responds by taking from 1 to f(t) chips from one 
of the piles. We assume / is nondecreasing and f(t) >_ t Vt. The two players 
alternate moves in this fashion. The player who leaves both piles empty is 
the winner. If m = mf, Player II is assured a win. 

Set d = mf - m. For d >_ 1, define Lim, d) to be the least value of w for 
which Player I can win. Set Lim, 0) = °°  Mm >_ 0. One can systematically gen-
erate a tableau of values for Lim, d). Given the position im,d,w), the play-
er about to move can win iff he can: 

(1) take t chips, 1 <_ t <_ W, from the large pile, leaving the next player 
in position (m, d - t , fit)) with f(t) < L(m, d - t) ; or 

(2) take t chips, 1 <_ t <_ w9 from the small pile, leaving the next player 
in position (m - t , d + t, f(t)) with fit) < Lim - t , d + t). 

(See Fig. 2.1.) Consequently, the tableau is governed by the functional 
equation 

Lim, d) = min|t > 0\fit) < Lim, d - t) or fit) < Lim - t , d + £)} 

subject to Lim, 0) = +°°  Mm >_ 0. Note that L(m, d) <. d \/d >. 1. Dr. Ferguson 
has written a computer program which can quickly furnish the players with a 
60 x 40 tableau. As an illustration, Figure 2.2 gives a tableau for the two-
pile game with fit) = It, two-pile Fibonacci Nim. 


