ON KTH-POWER NUMERICAL CENTERS

RAY STEINER
Bowling Green State University, Bowling Green, Ohio 43402

1. INTRODUCTION

In a previous paper [2], we considered the problem of determining all positive integers which possess kth-power numerical centers, and proved that there are infinitely many positive integers possessing first-power numerical centers and that the only positive integer possessing a second-power numerical center is 1 . In the present paper, we treat the cases $k=3,4$, and 5 .

2. THE CASE $k=3$

Let us begin by recalling the following
Definition: Given the positive integer n, we call the positive integer N, $(N \leq n)$, a kth-power numerical center for n in case the sum of the kth powers of the integers from 1 to N equals the sum of the k th powers from N to n.

In this section, we prove the following
Thearem 1: The only positive integer possessing a third-power numerical center is 1.

Proof: Let N be any third-power numerical center for the positive integer n. Since the sum of the cubes of the first N positive integers is given by

$$
\sum_{i=1}^{N} i^{3}=\frac{N^{2}(N+1)^{2}}{4}
$$

the condition that N be a third-power numerical center for n requires that

$$
\frac{N^{2}(N+1)^{2}}{4}=\frac{n^{2}(n+1)^{2}}{4}-\frac{N^{2}(N-1)^{2}}{4}
$$

On setting $X=2 N^{2}+1$, we obtain

$$
\begin{equation*}
X^{2}-2 n^{2}(n+1)^{2}=1 \tag{1}
\end{equation*}
$$

Let us now consider the following
Problem: To find all triangular numbers whose square is also triangular. This requires

$$
\begin{equation*}
\left(\frac{n(n+1)}{2}\right)^{2}=\frac{N(N+1)}{2} \tag{2}
\end{equation*}
$$

and, on setting $X=2 n+1$, we again obtain equation (1). But equation (2) was solved by Ljunggren [3] and Cassels [1], who showed that its only positive integer solutions are $(n, N)=(1,1)$ and $(3,8)$. Thus, the only positive integer solutions of (1) with X odd are $(x, n)=(3,1)$ and $(17,3)$.

From this, it follows that the only positive integer solution of (1) satisfying $X=2 n^{2}+1$ is $(X, n)=(3,1)$, and our result is proved.

3. THE CASES $k=4$ AND 5

Since

$$
\sum_{i=1}^{N} i^{4}=\frac{N(N+1)\left(6 N^{3}+9 N^{2}+N-1\right)}{30}
$$

the condition that N be a fourth-power numerical center for n requires

$$
\begin{aligned}
& N(N+1)\left(6 N^{3}+9 N^{2}+N-1\right) \\
& =n(n+1)\left(6 n^{3}+9 n^{2}+n-1\right)-N(N-1)\left(6 N^{3}-9 N^{2}+N+1\right),
\end{aligned}
$$

and on setting $X=2 n+1, Y=2 N$, we obtain

$$
\begin{equation*}
3 X^{5}-10 X^{3}+7 X=6 Y^{5}+40 Y^{3}-16 Y \tag{3}
\end{equation*}
$$

subject to the conditions
(4) $\quad X$ positive and odd, Y positive and even.

Further, since

$$
\sum_{i=1}^{N} i^{5}=\frac{N^{2}\left(N^{2}+2 N+1\right)\left(2 N^{2}+2 N-1\right)}{12}
$$

the condition that N be a fifth-power numerical center for n requires

$$
\begin{aligned}
& N^{2}\left(N^{2}+2 N+1\right)\left(2 N^{2}+2 N-1\right) \\
& =n^{2}\left(n^{2}+2 n+1\right)\left(2 n^{2}+2 n-1\right)-N^{2}\left(N^{2}-2 N+1\right)\left(2 N^{2}-2 N-1\right),
\end{aligned}
$$

and, on setting

$$
X=(2 n+1)^{2}, Y=(2 N)^{2}
$$

it reduces to
$X^{3}-5 X^{2}+7 X-3=2 Y^{3}+20 Y^{2}-16 Y$
subject to the conditions
(6) $\quad X$ a positive odd square, Y a positive even square.

Unfortunately, we have been unable to discover a method of solving equations (3) and (5) completely, although we have used a computer to verify that the only integer solution of (3), subject to (4), with $X<205$ is (X, Y) $=$ $(3,2)$ and that the only integer solution of (5), subject to (6), with $X<411$ is $(X, Y)=(9,4)$.

REFERENCES

1. J. W. S. Cassels, "Integral Points on Certain Elliptic Curves," Proc. London Math. Soc., Vol. 3, No. 14A (1965), pp. 55-57.
2. R. P. Finkelstein, "The House Problem," American Math. Monthly, Vol. 72 (1965), pp. 1082-1088.
3. W. Ljunggren, "Solution complète de quelques équations du sixième degré à deux indéterminées,"Arch. Math. Naturvid., Vol. 48 (1946), pp. 177-211.
