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Let n be a positive integer. The Fibonacci sequence, when considered 
modulo n, must repeat. In this note we investigate the period of repetition 
and the related unsolved problem of finding the smallest Fibonacci number di-
visible by n. The results given here are similar to those of the simple 
problem of determining the period of repetition of the decimal representation 
of 1/p. If p is a prime other than-2 or 5, it is an easy matter to verify 
that the period of repetition is the order of the element 10 in the multipli-
cative group Zp of residues modulo p. Analogously, the period of repetition 
of the Fibonacci sequence modulo p is the order of an elenjent £ in a group to 
be defined in §1. This result will allow us to estimate the period of repe-
tition and the least Fibonacci number divisible by n. Sections 2 and 3 con-
tain the exact statements of these theorems; in §4, related topics are dis-
cussed. 

1. DEFINITIONS AND PRELIMINARY RESULTS 

The Fibonacci sequence is defined recursively: f1 =1, f2=l9 and fn + i = 
fn + fn-i for all n >_ 2. If we define 

e = (1 + /5)/2, 

then it is easy to verify the following by induction. 

Lmma 7: em = (/^ +fm + 1)/2 + (fm/2). 
Letting Zn be the ring of residue classes of integers modulo n, define 

Zj/5"] = {a + b/5\a, b e Zn|. 

This becomes a ring with respect to the usual addition and multiplication. 
For n relatively prime to 5 define the norm as a mapping /l/:Zn[/5~] -»• Zn given 
by N(a + b/5) = a2 - 5b2. If Z*[/F] denotes the multiplicative group of in-
vertible elements of Zn[/5"], then the norm restricted to Z*[/5"] is a surjec-
tive homomorphism N:Z%[i/5] -> Z*. That the mapping is onto can be verified by 
observing that the number of elements in the image of N is over half the or-
der of Z*. 

Now consider the Fibonacci sequence modulo n. Define p(n) to be the least 
integer 777 such that fm=0 (mod ri). Let o(n) be the period of repetition of 
the Fibonacci sequence modulo n, i.e., O is the least positive integer m such 
that fm+i = 1 and fm+2 - 1- T n e following fact is well known [5], 

Lmma 2: fm = 0 (mod ri) <N=>p|m. 
This implies that p|a, and define D(n) = 0(n)/p(n). 

2. THE PERIOD OF REPETITION 

Let n = Pi1 P22 ••• pVm be the prime decomposition of n. The first theo-
rem relates o(n) to the structure of the group Z*[/5l. The second reduces 
the problem to a study of the groups Zp

ri [/IT] , and the third further reduces 
it to properties of the groups Zp[/5). 

TkzoKQjn 1: If n is odd then O (n) is equal to the order of e in the group 
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Theorem 2 : a(n) = [o(pil ) , o(plz) , . . . , cr(p̂ m ) ] , where [, ] denotes the 
least common multiple. 

ThdOJiQJfn 3: Let s be the greatest integer <_ r such that o(ps) = o (p) . 
Then a(pr) = pr~so(p) . 

P^0O$ 0$ ThdOKQM 7: By Lemma 1, 

£ a = Cfo-l +/a + l>/2 + (/a/2)^=, (fg + 2/a-1)/2 + (/CT/2)/§"= /g _ x = 1. 

Conversely, if £ m = 1, then, again by Lemma 1, it follows that fm
 = 0 and 

f m - i = 1. Hence, w is a multiple of a. D 

VKOO^ O£ lh(LOKQX(\ 2: The proof is immediate since, for any integers a and 
b, 

a = b (mod ri) 
if and only if 

a = b (mod p rt. ) 

for all i. D 
For any group G let | G | denote its order. The following result will be 

helpful in the next proof. 

pzr~z(p - l)(p + 1) if p = ±2 (mod 5) Lemma 3: . 2i>-2, 

|Z* [/5]| 
p2r~2(p - 1) if p = ±1 (mod 5). 

P/100̂ : By the law of quadratic reciprocity, if p = ±2 (mod 5), then 5 
has no square root modulo p. A quick calculation then reveals that the ele-
ments a + b/5 in the ring Z*r[/5~] without multiplicative inverse are of the 
form a = up and b = vp for any integers u and v with 0 <_ u < p1"1 and 0 <_ v < 
p r ~ l . Hence, |z*r [/5~] | = p 2 r - p 2 ^ _ 1 ) . On the other hand, if p = ±1 (mod 
5 ) , then 5 does have a square root mod p and hence a square root mod p r . The 
criteria for a + b/5 to have no multiplicative inverse in Z*r[^5] is that 

(a + &/5)(a - b/5) ~ a2 - 5b2 E 0 modulo p. 

There are p 2 ^ ~1' (2p - 1) solutions to this congruence, so that 

|z*p,[/5"]| = p 2 - p 2 -1 (2p - 1 ) . 

VK.00^ O{ Th&Ohm 3: Let p be an odd prime and consider 

g:z*AS5] ->• z*[S5), 
the homomorphism which takes an element of Z*r[v̂ ~] into its residue in Z*[/fT]. 
Theorem 1 implies that 0(p)\o(pr) and also that ea(P) lies in H> the kernel 
of g. A calculation using Lemma 3 indicates that \H\ = p r~ and hence the 
order of £CT(P) in Z*r[/5~] is a power of p. Since eCT(p) belongs to # it may 
be represented as 

e°M = (l + a1p + a2p2 + ...+a2,_1pr-1) + (Z^p + Z^p2 + -.. +br_lP
r'l)/5 

where 0 <_ a^ < p and 0 <_ bi < p for all i. Let s be the smallest integer 
such that either a8 4 0 or bs ^ 0. A simple induction then suffices to show 
that r - s is the least integer k such that ea(P^k= 1 in Z£r[/5~]. The above 
definition of s is equivalent to cr(ps) = cr(p) , which completes the proof. We 
leave to the reader the slight alteration of method needed to show that 0(2r) 
= 3 • 2V~\ n 
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These three theorems show that the problem of determining a is equivalent 
to the determination of s and the order of £ in the group Z*[/5] for odd 
primes p. Comments on the conjecture that s is always 1 will be made in §4. 
The next theorem gives bounds for O in the case of an odd prime. 

IkdOKdm 4: Let p = ±2 (mod 5) and p + 1 = 2V • k9 where k is odd. Then 
a|2(p + 1) and 2y+1|a. If p = ±1 (mod 5), then o\p - 1; furthermore, /5 ex-
ists in Z* and O equals the order of £2 as an element of Z*. 

It is not always true that 0 = 2(p + l) or O = p-1. For example, cr(47) 
= 32 and cf(101) = 50. 

VKOoi o& ThojOJim 4: Let p = 2 (mod 5). Since Zp[/5"] is a finite field, 
Z*[/5"] is a cyclic group [2]. Consider the elements of norm 1, i.e., the 
kernel K of the map N. As a subgroup of Z*[J5], K is also cyclic, and since 
N is surjective, \K\ = (p2 - l)/(p - 1) = p + 1. The norm of £ is -1, which 
implies that £2 is an element of K. This shows that a|2(p + 1). Now let a 
be a generator of the group Z*[/5~] . Any element of K must be of the form 
a(p-i)j £or s o m e integer j . Since £2 belongs to K but £ does not, there must 
be an integer j such that £ = a^p" ^J l'2' . Therefore, cr(p) is equal to the 
smallest positive integer m such that p2 - 117??(p - 1) (j + 1/2) , which is equiv-
alent to 2(p +1)\m(2j +1). Since 2j +1 is odd, this concludes the proof for 
the case p = ±2 (mod 5). 

Now let p = ±1 (mod 5). The fact that 5 has a square root modulo p gives 
rise to a canonical homomorphism h:X*[/5] ->• Z*, which takes any element of 
Zp[/5"] into its residue mod p. We can then define a map /:Z*[/5~] -> Z* x Z* 
by jT(a) = (il/(a), h(a)). Routine calculation bears out that / is one-one and 
onto and thus an isomorphism. Since |Z*| = p - 1 , the order of any member of 
Zp[/fT] divides p - 1 ; in particular, a|p-l. The last statement in the theo-
rem becomes apparent by noting that the first coordinate of f(e ) is 1. • 

3. THE SMALLEST FIBONACCI NUMBER DIVISIBLE BY n 

By Lemma 1, the value of p(n) is the least positive integer m such that 
£m lies in the subgroup 

J1 = {a + b/5 £ Zw[i/5] \b = o}. 

In addition, N(ep) = (71/£)p = (-l)p = ±1 indicates that p is actually the 
least positive integer m such that em lies in the subgroup 

J = {a + b/5 £ Z*[i/T] |i = 0 and a2 = ±l}. 

If we define Vn = Z*[/5]/J9 and carry out proofs exactly as in §2, we obtain 
three theorems concerning the value of p corresponding to Theorems 1, 2, and 
3 of §2. 

ThzotKim 5: If n is odd, then p (n) is equal to the order of n in the 
group Vn. 

Ihdonm 6: p(n) = [p(p1J'1)5 p(p[2)» •••> P(P^m)^ where n = p^p^2 • •• Pjm 

is the prime decomposition of n, 

IkzoKtm 7: For an odd prime p let t be the greatest integer <_ r such that 
p(p*)= P(p). Then p(pr) = pP"t(p). Also 

Ptf') = 
3 • 2P _ 1 if p = 1 or 2 

3 8 2r"2 if r > 3. 
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The final theorems describe the relationship between p and O and give 
bounds for p in the case of an odd prime. 

TkdOtidm 8: If n = 2 ̂°  p f1 p ̂ 2 ... vTm where the p. are distinct odd primes, 
then p = 0/D(n) with 

( 1 if rQ <. 2 and £(p^) = 1 for all i 
Bin) = < 4 if rQ £ 1 and Z?(p̂  ) = 4 for all i 

I 2 otherwise 

and for an odd prime p, 

1 if p E 11 or 19 (mod 20) 
2 if p E 3 or 7 (mod 20) 

D(p) = { 4 if p E 13 or 17 (mod 20) 
1 or 4 if p E 21 or 20 (mod 40) 
1, 2, or 4 if p = 1 or 9 (mod 40). 

ThdOKOM 9: Let p be an odd prime and express p.+ 1 = 2V • k9 where k is 
odd. 

If p E 3 or 7 (mod 20), then p|p + 1 and 2y|p 
If p E 13 or 17 (mod 20), then p|(p + l)/2 and 2y_1|p 
If p E 1 (mod 5), then p|p - 1. 

The proofs will utilize the following lemma. 

Lumma 4: For n odd, 

Bin) = 1 «=> p = 2 (mod 4) 
D(n) = 2 <=» p E 0 (mod 4) 
D(n) = 4 <=> p E 1 or 3 (mod 4) <=» o 

VK.00^\ By Lemma 1 , we have i n Zn[/5~] , 

ep = f 
^ J p - i 
£2P = / p - l = f p / p -2 + ( " I ) " = ( - D 
e4p = 1 

so that D = 1, 2, or 4. We will prove the above equivalences in the follow-
ing order. 

£ = 4 < = » p E l o r 3 (mod 4): p = 1 (mod 2) <==» e2p = -1 ̂ =^ Z? = 4. 

D = l ^ p E 2 (mod 4): If D = 1, then (ep/2)2 = ep = 1. Now ep/2 = ±1 
would contradict the fact that fp is the least Fibonacci number divisible by 
n. Since +1 and -1 are the only square roots of 1 with norm 1, ep^2 has norm 
-1. Then -1 = N(ep/2) = (/l/e)p/2 = (-1)p/2 implies p = 2 (mod 4). 

D = 2 <?H> p E 0 (mod 4): Assume D = 2. Since D ± 4, p is even and N(eQ) 
= (il/e)p = 1. Therefore, e2p = 1 implies ep = -1. Then e 2 is a square root 
of -1. A small calculation shows that the only square roots of -1 in [v5] 
with norm -1 lie in J. However, £ cannot lie in J by Theorem 5 and thus 
has norm +1. Now 1 = N(ep/2) = (Ne)p/2 = (-1) 2 implies p = 0 (mod 4). The 
remaining implications follow logically and immediately from the above. • 

VtiOOl oi Thuotim 8: Let p be an odd prime. If p E 3 or 7 (mod 20), then 
by Theorem 4, a E 0 (mod 8) and by Lemma 4, D = 2. If p E 13 or 17 (mod 20), 
then a E 4 (mod 8) by Theorem 4 and D = 4 by Lemma 4. If p = 11 or 19 (mod 
20), then by Theorem 4, o\p - 1, which implies that O E 2 or 6 (mod 8). Then 

a E 2 or 6 
a E o 
a E 4 

(mod 8) 
(mod 8) 
(mod 8 ) . 
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by Lemma 4, D = 1. If p = 21 or 29 (mod 40), then o\p - 1 implies that O ^ 0 
(mod 8). By Lemma 4, D ^ 2. This concludes the proof of the second part of 
the theorem. By Theorems 2 and 6, a formula for D(n) is obtained: 

[D(2r° )p(2"°  ), 5(pMp(p'i), ..., 2?(pir»)p(p2,«)] 
DM = 1 I 1 * . 

[p(2r° )5 p(p^), ..., p(p*")] 

For an odd prime p, we have, by Theorems 3 and 7, 

<7(pr)/p(pr) = pr-8cr(p)/pr-*p(p) = p*-sa(p)/p(p). 

Since this value is either 1, 2, or 4, it must be the case that s = t, and 
hence, D(pr) = Dip). The formula above reduces to 

[D(2r° )p(2r»), D(p )p(p ), ..., 0(p )p(p )] 
Din) = l- X- = ^ — . 

[p(2r° ), p(pr), ..., p(pm)] 
A routine checking of all cases—using Lemma 4, the formula above, and the 
formulas for o(2T) and p(2P)—-verifies the remainder of Theorem 8. • 

Theorem 9 is now an immediate consequence of Theorems 4 and 8. 

4., RELATED TOPICS 

Several questions remain open. We would like to know, for example, whe-
ther a formula for D(p) is possible when p = 1 or 9 (mod 20). 

One may also ask whether 0(p2) ± 0(p) for all odd primes p. If so, our 
formulas of Theorems 3 and 7 would be simplified so that s = t = 1. This 
question has been asked earlier by D. D. Wall [6], Penny & Pomerance claim 
to have verified it for p <_ 177,409 [4]. Using Theorem 1, the conjecture is 
equivalent to ep 2 _ 1 ^ 1 in Z*2[/5 ] . A similar equality 2P~1 = 1 in Zp has 
been extensively studied, and the first counterexample is p = 1093. The an-
alogy between the two makes the existence of a large counterexample to o(p ) 
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CONGRUENT PRIMES OF FORM (8r + l) 

J. A. H. HUNTER 

An integer e is congruent if there are known integral solutions for the 
system X2 - eY2 = Z2, and X2 + el2 = Z2. At present, we can be sure that a 
particular number is congruent only if corresponding X, Y values have been 
determined. 


