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Readers of this journal have long been interested in Bode's Rule, see, 
e.g., [26] and [15]. Indeed attempts to solve it have ranged from those de-
void of science but fairly accurate to those based on some physical prin-
ciple (s) but rather inaccurate, such as Berlage's and 0. Schmidt's theories. 
The problem of planetary motions was first tackled by Eudoxus, who proposed 
rotating tilted concentric spheres, rather like a gyroscope, to explain each 
planet. When Kepler solved the problem of their motions with the concept of 
areal velocity, the area swept out in an invariable plane divided by the time 
is a constant, the problem of a law for their spacing remained. Indeed, I 
think the unit of angular momentun should be named after Kepler for his con-
tribution of area as a vector. Bode's problem is of great value to the his-
tory and especially the philosophy of science. The qualities that distinguish 
pure mathematics are succinctness, elegance, fertility, and relevance to the 
unsolved problems. But to a scientist the first criterion is reproducibility. 
The multifarious, variegated, and at times loquacious and mellifluous mono-
graphs on this aspect of cosmogony attest to man's persistent and insistent 
attempts, at times based on specious assumptions, to find order in a theatre 
of nature that may have no reason to be other than nearly random. Such is 
one view. But while science corrects its mistakes (so far) it must be remem-
bered that Boltzmann committed suicide because his contemporaries would not 
accept his counting of molecules, Wagoner's 1911 theory of continental drift 
was not believed until the 'sixties, and Newton's theory was not believed on 
the continent until Clairaut's prediction of the return of Halley's comet in 
1759 (P = 76.75 ± 1.5 yr) came true. Such is the lag between prediction and 
proof. The final answer to Bode's problem will be known within twenty years 
when sophisticated computer simulations are finished. My work will probably 
remain the most accurate, namely 1-percent with a few exceptions either way. 
In any case, my work has led to some interesting mathematics, especially the 
Self-Lucas property (see Section 2). May it be that Urania and Euterpe have 
recessed a part of Nirvana to sequester all who have slaved over this vexing 
problem. The impetus for this paper comes from Kowal's [17] recent discovery 
of an object between Saturn and Uranus that prima faciae, see Table 1, fits 
my rule [6, 7] and does not fit any other rule published! Sequentially, I 
present an overview of the history of Bode's Rule, Kowal's discovery and then 
generalized folded sequences. 

1. BODE'S PROBLEM AND KOWAL'S DISCOVERY 

Historically, the first offered solution to Bode's problem was Kepler's 
[1] perfect solids, which model, in fact, antedates Bode by two centuries. 
Gingerich [11] has discussed the accuracy of Kepler's youthful proposal. At 
first, the Titius-Bode mnemonic was successful with the Asteroids and Uranus 
but it fails badly for Neptune and Mercury. Attempting to save it, Miss Blagg 
[3] introduced two more parameters into it. Nieto, see [9] of paper [7], sup-
ports her work. The literature is full of algebraic rules of the form, dis-
tance « bn and indeed of more complicated rules. It is interesting to look 
at the range of b values. A partial list is: 
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Dermott 
von Weizsacker 
Greig 
Quadranacci 
Dermott 
Cale 
Pierucci & Dermott 
Gaussin 
Blagg 
Dermott 
Belot 
von Weizsacker 
Greig 
Quadranacci 
Titius 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

2 = 1.2599 (Saturnian moons) 
1.370889 (10 eddies, inner planets), 
1.378241 (Saturn's inner moons) 
1.380 (see below) 
3 = 1.4422 (Uranian moons) 
0/J3 = 1.5115 (see [15]) 
41/3 = 1.5874 (Jovian moons) 
1.72 
1.73 
61/3 = 1.817121 
1.886 
1.894427 
1.8995476 
1.905 (see below) 
2.00 

See Gould [15] for references I have not cited. Dermott (see [2] and [10] of 
paper [7]) was forced to take Earth and Venus together to retain his period 
factor of /6~. Dermott Ts arbitrary period factor of /2~ for Saturn's moons 
misses both Rhea and Janus. 

Indeed, I have myself happened upon some rather well-fitting arbitrary 
rules. One such is a bisection of the Quadranacci recurrence Qn+i = Qn+Qn_3, 
namely: 1, 1, 1, 1, 2, tf=3, 4, £/=5, 7,4 = 10, 14, J = 19, ...,£= 95, 
..., which is very good at representing reciprocal distances. Another one 
for the distances begins: 4, 7, 10, 15, ... . The distance factor, b, is 
(1.380278)2 = 1.905166. The most complex rule of which I am aware is Roth-
man's (see [9]), d = n(5. 5 + F2)/9 (1 +Fn ). It has seven parameters: n, 5.5, 
2, 9, and 1, and two to determine the Fibonacci sequence, and since only 9 
planets are fitted then only 2 degrees of freedom are left which is unscien-
tific. All of the above rules are arbitrary, except von Weizsacker's and my 
own. My own view is that any rule with more than two parameters violates 
Occkham's razor, "Essentia non sunt multvpticanda yvaetev necessitatem." 

Dermott {ibid.) proposed different period factors for each satellite sys-
tem, whereas my theory is simpler since the same limiting ratio, 0 , applies 
to all. He also ignored the outer Jovian and Saturnian moons. I chose to 
emphasize them. This suggests the principle of Contrary Ignorability: what-
ever earlier researchers ignore—that is the path to pursue. My work indi-
cates that outer Jovian moons should cluster well within 10 percent of 97, 
257, 730, and 608 days (Table 2 of [6]). The announcement of Jupiter's XIII 
moon [21] at 239 day and i = 27°  [25] came after my initial work [4], [22] 
and satisfies the above sequence. I also studied the relevance, if any, of 
rotation periods and grazing periods of parent bodies in [4], using: 

(35) PgPM = 3TT/C7 where G = 498 day"2 (g/cc) "x. 

The period of a satellite just grazing the surface of Saturn, the Sun, Jupi-
ter, and Uranus would be 0.167, 0.116, 0.12, and 0.11 day. The criterion 
for coalescence against tidal forces may be written 

(36) pm > /M/distance3 or Pm > PgJ (4TrfpM /3pm) 

where m, M are the satellite and parent masses, pm and pM their densities, Pm 
the period of a satellite at this Roche limit, and / a factor between 2 and 
10 [24, p. 18]. When (36) is not satisfied "rings" result. In [4] an inner 
Uranian moon was suggested which would have a period of 1/1.3292 = 0.752 day 
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according to (17) of [6]. It has even been proposed that the separation, a, 
between binary stars satisfies Bode's rule [27], but I am very skeptical of 
that. 

My own interest in Fibonacci numbers dates back at least to 1966 when I 
obtained a copy of Vorobyev's book. I tried these numbers on the planets 
with what seemed good accuracy and communicated this to Gould [13] , pointing 
out the relevance of bisected Fibonacci sequences. After long arduous ef-
forts, I thought I had put the problem to rest when news of Kowal's discovery 
[17] of a planetoid between Saturn and Uranus, too big to be a comet nucleus 
and too small to be a large planet, was announced. He calls the object Chiron 
after one of the Greek half-man/half-horse animals. Is this discovery to 
prognosticate that this Chinese year 4676 (see [18]), beginning 7 Feb. 1978, 
should not be the year of Earth-Horse, but rather the year of the Centaur!? 
One can see in Table 1 that Chiron fits very neatly into the bisected half-
integer sequence. I could have predicted this object three years ago [5, 6] 
from the folded sequences I had discovered but it would have been considered 
wildly delusionary at the time. The major body that should occur before Nep-
tune in my sequence given in [5] and Table 2 of [6] is easily calculated to 
have a reciprocal period corresponding to -1974 - 4558 = -6532. Its period 
should then be 317816/6532 = 48.66 yrs. The agreement with ChironTs period 
of 47 to 51 yrs is quite good. The ellipsis (...) in [5] and [6] clearly in-
dicated that the sequence continued in both directions so that a body at Chi-
ron's position was implied. In an earlier work [4] I had stated, " . . . one 
should really ask why don't Jupiter, Uranus and Neptune have a plane of par-
ticulate matter [rings] inside Roche's limit since that is natural consider-
ing the pervasiveness of grains and cometesimals . . ." (p. 16). As we now 
know, rings have been found around Uranus [16], [28]. The way to test my the-
ory would be a computer simulation using reciprocal periods given by (23a) or 
(23b) or [7] (or, perhaps, using part of a bisected odd-N folded sequence in 
[6]) to see if the broad maxima in [10] can be sharpened. 

The agreement of Chiron's period with Folded Fibonacci sequences is 
reassuring but not perfect. I have been able to represent Neptune and outer 
satellites in general more accurately than any other rule simply because I 
worked with recursive sequences rather than naive power laws. Also, mine is 
the only work to represent the several comet groups (see Table 1). So that, 
in terms of completeness and goodness of fit, my hypothesis is the best. It 
remains for a computer simulation to test whether my proposal gives maximum 
stability. Such a simulation may solve the following question: Why are some 
period ratios nearly but not quite small integers? Saturn:Jupiter is not 5:2 
but is 6551:2638 to seven, significant digits. Accurate to only five digits 
is 149:30. Neptune:Uranus is not 2:1 but is 51:26 to five digits. And Ura-
nus : Saturn is 77:27 to nearly five digits. Similarly, Earth:Venus is not F7: 
F6 but 1172:721 to eight-digit accuracy. These ratios suggest that low-order 
commensurabilities (LOG) are avoided, except for the ratio 2 among the Gali-
lean satellites. The Kirkwood gaps indicate that LOC are unstable if the 
ratio >i 2, such as 11/5, 9/4, 7/3, 5/2, 8/3, and 3/1. 

The problem is ancient. The Pythagoreans believed in orbits in arithme-
tic progression and added a Central Fire and a Counter-Earth [23] to obscure 
that Fire so that the total number of moving bodies be the "magic" number 
1 + 2 + 3 + 4 = 10. Yet Aristarchus placed the Sun in the center for reasons 
of simplicity 18 centuries before Copernicus. Later, Ptolemy and others con-
founded the picture with equants and epicycles, until Kepler discovered that 
blemished curve—the ellipse. 
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Further back in time, the concepts become anthropocentric and folklorish 
as in the mural of Ra and Noot found in the tomb of Rameses VI. 

There is still the possibility that Bode's problem has no solution or that 
the distribution of planets is random on a logarithmic axis, save that they 
cannot be too close to each other. But my work has led to some interesting 
sequences that I will discuss in the future. 

TABLE 1 

The Correspondence between the Half-Integer Sequence and the Planets 

Reciprocal 
Period 

Period 
(yrs) Solar System 

-550 -
340 + 

-210 -

130 + 
-80 -

50 + 
-30 -
20 + 
-0 -
0 + 

-
0 + 
0 -
20 
30 -
50 -
80 -
130 -
210 -
340 -
550 -
890 -
1440 -
2330 -
3770 -
6100 -
9870 -

233 
144 
89 

55 
34 

21 
13 
8 
5 
3 

2 
1 
1 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 
233 

0.999969 
1.618 
2.6183 

4.235 
6.859 

11.07 
18.035 
28.66 
48.66 
69.73 

161.00 
123.0 
521.0 
99.5 
83.55 
45.42 
29.42 
17.85 
11.11 
6.849 
4.237 
2.6177 
1.618 
1.0 
0.618 
0.382 
0.236 

null 
Hungaria #434 (991 da = 2.71 yrs), etc. (Average 
= 2.75 yrs) 

null 
Faye (7.35 yrs); Brooks II (6.72 yrs); d'Arrest 

(6.67 yrs), Finlay (6.90 yrs), etc. 
null 
Neujmin (17.97 yrs) 
null 
Chiron (47 to 51 yrs), other Centaurs 
Olbers (69.6 yrs); Brorson-Metcalf (69.1 yrs); 
Pons-Brooks (71 yrs); Halley 

Neptune (164.79 yrs); N + P (168.4 yrs) 
Swift-Tuttle (119.6 yrs); Barnard II (128.3 yrs) 
Planet X (464.? yrs) 
null 
Uranus (84.01 yrs) 
null 
Saturn (29.46 yrs) 
null 
(Jupiter 11.86 yrs) not meant to fit Jupiter. 
null 
Astrea (4.13 yrs); asteroids (0.23 yr ) 
null 
(Mars) 
(Earth) 
(Venus, 0.615 yr) 
null 
(Mercury, 0.241 yr) 

2. GENERALIZED FOLDED SEQUENCES 

The obvious generalization of the definition of folded sequences, (4) of 
[6], is 

(37) {%•,»}*= Pj.k + (~lf + 1Pj,k-N with 0<k<Fl-l 
where a script letter denotes a folded sequence, {Pj} is the jth coprime se-
quence as in (1) of [20], and {̂ -.jy} is finite if N is finite. This latter 
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point differs from (1) of [6] wherein folded sequences were made infinite by 
repeating the cycle ad infinitum. It will help to display the Folded Pell 
array {q>2} in Table .2: 

TABLE 2 

Folded Pell Sequences for N Odd 

N 

1 

3 

5 

7 

9 

11 

13 

15 

17 

V 

5741 

-13859 

985 

-2377 

5743 

-13855 

169 

-407 

987 

-2373 

5753 

-7/2 

29 

-69 

171 

-403 

997 

-2349 

5811 

6+5/8 

-5/2 

5 

-11 

31 

-65 

181 

-379 

1055 

-2209 

-2 -2/8 

6 +/8 

-3/2 

1 

-1 

7 

-7 

41 

-41 

239 

-239 

1393 

2+/8~ 

-2-0 

-h 

3 

3 

17 

17 

99 

99 

577 

577 

2 +0 

2 +/8~ 

/2 

13 

27 

75 

157 

437 

915 

2547 

6 +/8~ 

2 +2/8" 

3/z 

71 

167 

413 

973 

2407 

5671 

6+5/8 

5/2 

409 

983 

2383 

5729 

13889 

7/2 

2379 

5739 13861 

13865 

Sum 

1 

7 

41 

239 

1393 

8119 

47321 

The last row is the half-integer subscript v defined by 2k = 2v + N. Both 
infinite folded sequences (which I often call half-integer sequences) are 
given, namely for N= 1 (mod 4) and N = 3 (mod 4). Subscripts within braces 
are part of the name of the array/sequence, whereas those outside the braces 
indicate the value of the row/element. 

In order to find the jth Half-Integer sequence the theorem in [6] is gen-
eralized. 

Th<LOH.Qjmi {%-,s)k + 1 /{cPj,N)k approaches a limit as N+°° for each k depen-
dent only upon the value of N modulo 4. 

Pl00&: Define 0 = N modulo 4. Since r = (k - N/2) then r = -h gives 

k = (N - l)/2 = [N/2]. 

We will need P_kP_k_i/(Pk+1Pk) = -1, from which one finds 

P„k/Pk + 1 = -z = -Pk/P-k.±. 
Thus z -> ±3 as N-+°°, while 0 = 3 or 1, respectively. Then, 

= i^^a - g ) / a + z) 
which -> ±((a - 1) / (a + 1))± x as il7->°°, while /V = 1 or 3 (mod 4), respectively. 
Hence, where the limit of 9 is S, 

(38) {S.-U/isA = (a + D/(a - 1) = -{S$}„/{$£}-,,. 
In the following the first subscript of 5j\r and Pj,n is suppressed. 
A number of relations follow from the elegant 

(39) §r= P*+h + dPr_h and S* = P*_ h + d P r + h ; 
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these are (40), (41), (42), (43), and (45). 

(40) jP% = (Qm + h~ £*_h) and Pn = (£*n+h- Qn.h)/jd, 

(41) 

(42) 

(2 + d)P*+h = 2* + 1 + £r and d(d + 2)Pr_h = (§p + 5 ? ^ ) , 

(5r + 5*) = 2 Cot* and ($r - S$ ) = 2^3r, 

and the Binet-like formulas 

Qr= £(ar + i3r) and §* 

£ = (ah + ^3_/z) = (a 

and analogous to Fn 

(43) 
where 
(44) 

(-l)n+1F.n. 

(45) ^> Y> ' ^ 2 (5. £*PH 

+ oT") = -i($} 

we have 
• r + h 

1) , where i, -1, 

Now the initial values are determined by (37) or (38) and are 

(46) »j,-fe (2 + d) = § and SJ.?J J for all j. 

The bisections of the general Half-Integer sequence for N = 1 (mod 4) ap-
pear in (47) and (48), where t instead of j is used from now on for the par-
ameter. Compare with the penultimate rows of Table 2. Also (49) is the 
subscript r. In Table 3 note that (2 + d) = Z,' 

(47) (th+dth+i±t2+3dt2+d+2) (t2+dt2+d+2) 

= (ah 

2+d 

+ a~n)/L and V 

(t2+2+d) 

/ 5 . 

(48) -(t3+dt3+3t+2dt) -(t+dt) (t3+3t+dt) 

(49) 

TABLE 3 

Parameters of Half-Integer £-Fib Sequences 

I-h/Ih (ah + a-h) (ah-a'h) td 

Jv - 2 
1//I 

1 

1.5 

2 

/5 

8/3 

3 

2/3 

4 

/32" 

/y + 2 

3//2 

/5 

5/2 

/8 

3 

10/3 

/n 
4 

/20 

6 

1.272020 

1.414213 

1.618034 

2.0 

2.414213 

2.618034 

3.0 

3.302776 

3.732050 

4.236068 

5.828427 

8.352410 

5.828427 

4.236068 

3.0 

2.414213 

2.236068 

2.0 

1.868517 

1.732050 

1.618034 

1.414214 

2.014490 

2.030104 

2.058171 

2.121320 

2.197368 

2.236068 

2.309401 

2.367605 

2.449490 

2.544039 

2.828427 

0.241187 

0.348311 

0.485868 

0.707107 

0.910180 

1.0 

1.154700 

1.267103 

1.414213 

1.572303 

2.000000 

1.000 

1.500 

2.236 

3.750 

5.657 

6.708 

8.888 

10.817 

13.856 

17.888 

33.941 



536 FOLDED SEQUENCES AND BODE'S PROBLEM [Dec. 

Table 3 shows us that the Half-Integer Pell sequence is the only one in 
which the ratio of the central pair, S_-h/Sh equals the characteristic root. 
This is clear from (a + l)/(a - 1) = a whose solution is 1 + /l. Sequences 
given by (a^ + a~h) = a have a very simple Binet-like formula but the larger 
root a = 2.1478990 is the solution to a cubic. Are there Half-Integer se-
quences with integer terms? Consider t-Fib sequences, 

^t, n + 1 = tPt t n + Pt, n-1 •> 

for which d is an integer, d = t + 4. Consider the Root-Five sequences, 
t = /F, which have the PL-types: 1, 0, 1, v, 6, 7v, 41, 48y, 281, (7 • 47)i>, 
(18 • 107), (55_- 41) , ... and 2, v, 7, Sv 9 47, 55y, (23 • 14), 377y, 2207, 
... where v = /5. In the corresponding Half-Integer sequence, from v = -llh 
to +ll/z, 

(50) ..., -199v, 170, -29y, 25, -4i>, 5, v, 10, lly, 65, 76y, 445, ... 

we see that both bisections are integers (after dividing by common factors). 
Furthermore, one bisection consists of every fourth Fibonacci number includ-
ing F5 and the other consists of every fourth Lucas number including L5. Can 
this be generalized? As a little algebra shows, yes, 

(51) di = d\ - 2 or d± = t\ + 2 or ti = thdh 

where t4, dh refer to the sequence from which every fourth term is extracted 
and di, ti refer to the chosen sequence. To illustrate this, the Root-32 
Half-Integer sequence, see Table 3, has from (46) 

Sh = t = k/2 and S_h = 2 + d = 8. 

The bisections of this reduced by common factors are: 

(52) ..., 33461, 985, 29, 1, 5, 169, 5741, ... 

(53) ..., -8119, -239, -7, 1, 41, 1393, 47321, ... 

which are every fourth Pell number as expected beginning with P5 = 29 and 
P*/2 = 41. Proofs of statements above follow easily from (39) or (43). So 
(23a, b) are every fourth term of the t = /(/5 - 2) sequences. The "F" se-
quence to 3 decimals is ..., 1.236, -0.486, 1, 0, 1, 0.485868, 1.236, 1.086, 
1.764, 1.943, ... and clearly the ratios 

1.236:1:1.764 = 3 + v:2 + v:3 + 2v = 20:0 + 1 : 0 + 3 

show that every fourth term of "F" gives (23a) of [7] and equivalently a bi-
section of Table 1. The general recurrence of these bisections is 

Bt,n + 1 = P't,>+Bj,n ~ P>t,n-1 

where P* h = 34 for (52) and (53). A bisected t-Fib sequence has the recur-
rence 

Pn+2 = (t2 + 2)P„ - P„_2 or &2Pn = t2Pn. 

Indeed the recurrence's middle term for ̂ -sectioning has a coefficient given 
by the 777th rising diagonal of the Lucas triangle. The bi-bisection case is 
Pn+1+ = (ah + ka2b + 2b2)Pn - bhPn.hi and so on. 

We come now to what I regard as the most important property of these se-
quences. The Self-Lucas property, (14) of [6.], remains unchanged in this 
generalization, namely 

(54) (2r + 1 + gr.j)/d = (-l)r'\.P and (.i* + 1+S*.1)/d=(-lf+hS*1., 
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where d = (a - 3) and (a + g) = j = t . Now (54) may be proven from (43). 
Note that terms with subscripts (r + 1) , (r - 1) and -r all belong to the 
same bisection of §t or •§£. This is obvious since (r + 1) - (r - 1) = 2 and 
(r - 1) - (-p) = 2k - (N + 1) which is also even. Taking ratios of (54) one 
may form the triplet rule, for both £t

 an<3 £?, 

(55) (§r + Q>v + 2)/(Q>r + §r_2) = S-r-i/S-r+i. 

Now this is readily illustrated when J is an integer so consider (50). Obvi-
ously (10 + 65)/3 = 25 and (lit; + 76y)/3 = 29i> and both are members of (50). 
Again from (52) one has (985 + 29)/6 = 169. From Table 1, I illustrate (55) 
by ((80 - 2) + (30 - l))/((30 - 1) + (0 - 1)) = (0 + 5)/2 by using the trick 
(0 + 2) = 0v. But this last ratio, (0 + 5):2 is Chiron:Neptune. 

I introduce a new operator capital lambda, A: 

(56) A E I + E, 

where E and I are the forward shift and identity operators and, therefore, 
(A - V) E (E + E~l). Then the Self-Lucas property may be written 

(57) (A - V)$t,r = d(-l)"*St,-r, 

where 2" is another notation for § and §*, respectively. We may also write 
KBn - dB-n or -dB-n depending upon which bisection of Qt or §* is being con-
sidered. The Self-Lucas property does not hold for F-like sequences: Pt)1 = 
1 = Pt)_1? or L-like sequences: P%t 1 = 1 = -P%t_1. In this sense, the Half-
Integer sequences are more important. 

How are (54) and (57) to be interpreted geometrically? Let alternate 
terms of the bisection be made negative, then the recurrence is 

(58) 6zNn = ~(t2 + 4)tfn. 
Further let the terms of Nn be reciprocal periods of planets and let a minus 
sign mean retrograde (backward) motion. Then the Self-Lucas property may be 
written 

(59) ANn = -dN-n, 
which in words says that the set of synodic (apparent) frequencies of a col-
lection of alternately pro- and retrograde planets are simply proportional to 
the negative of the sidereal (real) frequencies in reverse order. 

3. COMMENTS ON THE RECIPROCAL PERIOD RULE 

Why are the planetary frequencies not Folded or Half-Integer Pell sequen-
ces? The limiting distance ratio would be 3.2386766. One solution to this is 
point (x) of [7], namely to bring the planets closer to each other, thereby 
minimizing their potential energy which is negative; that is, 

(60) m^YJ{GMJmi/d2
av), 

i * J 
where Mj is Jupiter's mass, m^ the mass of any planet except Jupiter, and dav 
is a time-weighted distance from Jupiter. The Pell and, indeed, all t -Fib 
sequences satisfy point (ix), the avoidance of low-order commensurabilities, 
since gcd(Pt,n+i, Pt,n) = 1 for all integers t and n. This can also be seen 
by noting that the continued fraction of the roots of any t-Fib recurrence 
consists of repeated (l/t)Ts, so no one convergent is a great deal better 
than another. The sequence, 11, 12, 16, 24, 38, ..., is an example who---
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gcd(12, 16) ̂  1. Given that the total number of planets is a constant, then 
minimization of the cumulative perturbation frequencies (synodic) occurs as 
t becomes small (point xii). Of course, as t becomes small the average dis-
tance becomes smaller and the average perturbation force becomes very large. 

k. FINALE 

The logic [7] of my rule suggests that other civilizations may be signal-
ing us in binary code with 1/02 = 0.01100,00111,00100,01000,01100, .... But 
let me assure you that my getting into Bode's Rule was not a matter of choice. 
Its rewards, though, have been a large number of empyreal highs, some over 
ideas I later rejected; but now I am glad to be through with this whirlpool. 
Finally, we all know that the idea of the "music of the spheres" which dates 
back to Eudoxus is poetic license, nonetheless I could not help noting that 
though most of the "notes" in my scale are cacophpnous, the first note, 2+v, 
corresponds to C-sharp two octaves high, since (2+v) = 225 . 

REFERENCES 

1. Johannes Kepler, Mysterium Cosmographicum (Tubingen, 1597). 
2. Johann Elert Bode, Vom dem neuen3 zwischen Mars und Jupiter,, entdeckten 

achten Haupt-Planeten des Sonnensystems (Berlin, 1802). 
3. M. A. Blagg, Mon. Not. Roy. Soc. Astr., Vol. 73 (1913), pp. 414-422. 
4. W. E. Greig, The Distance Rule in Planetary and Satellite Systems (1974), 

55 pp. (private circulation). 
5. W. E. Greig, "The Reciprocal Period Rule," Bull. Amer. Astron. Soc. , Vol. 

7 (1975), p. 449. 
6. W. E. Greig, "Bodefs Rule and Folded Sequences," The Fibonacci Quarterly, 

Vol. 14 (1976), p. 129. 
7. W. E. Greig, "The Reciprocal Period Law," The Fibonacci Quarterly, Vol. 

15 (1977), p. 17. 
8. W. E. Greig, "Abstract of Reference," Zentralblatt fur Matematik, 1978 (in 

press). 
9. I. J. Good, "A Subjective Evaluation," J. Amer. Statistical Assn. , Vol. 64 

(1969), pp. 23-49. 
10. J. G. Hills, Nature, Vol. 225 (1970), p. 840. 
11. Owen Gingerich, Icarus, Vol. 11 (1969), pp. 111-113. 
12. J.L.Brady, Astron. Soc. Pacific, Vol. 84 (1972), pp. 314-322. 
13. W. E. Greig, letter to H. W. Gould, dated 30 Aug. 1973. 
14. M. G. Monzingo, "Extending the Fibonacci Numbers," The Fibonacci Quarterly, 

Vol. 12 (1974), p. 292. 
15. H.W.Gould, "Cale's Rule," Proc. W. Va. Acad. Sci. , Vol. 37 (1965), pp. 

243-257. 
16. Anon., "Rings of Uranus," Science News,Vol. Ill (1976), pp. 180, 245,52. 
17. C. T. Kowal, "Chiron the Centaur," Science News, Vol. 112 (1977), pp. 311, 

388, 409, 419. 
18. J. L. Friend, Sky and Telescope, Vol. 32 (1963), p. 329. 
19. D. E. Thomsen, "Toro! Toro!," Science News, Vol. 103 (1972), pp. 186, 173. 
20. W. E. Greig, "On Sums of Fibonacci-Type Reciprocals," The Fibonacci Quar-

terly, Vol. 15 (1977), pp. 356-358. 
21. Anon., "Jupiter!s 13th Moon," Science News, Vol. 109 (1974), pp. 195 and 

367. 
22. W. E. Greig, Bull. Amer. Astron. Soc, Vol. 7 (1974) , p. 337. 
23. N. A. Pananides, Introductory Astronomy (Reading: Addison-Wesley, 1973). 



1978] FIBONACCI NUMBERS IN COIN TOSSING SEQUENCES 539 

24. 0. Struve, The Universe (Cambridge, Mass.: MIT Press, 1962). 
25. Brian Marsden, letter to the author dated 1976. 
26. B. A. Read, The Fibonacci Quarterly, Vol. 8 (1970), pp. 428-438. 
27. F.X.Byrne, Bull. Amer. Astron. Soc., Vol. 6 (1974), pp. 426-427. 
28. L. H. Wasserman, et al. , Bull. Amer. Astron. Soc, Vol. 9 (1977), p. 498. 

FIBONACCI NUMBERS IN COIN TOSSING SEQUENCES 

MARK FINKELSTEIN and ROBERT WHITLEY 
University of California at Irvine, Irvine, CA 92717 

The Fibonacci numbers and their generating function appear in a natural 
way in the problem of computing the expected number [2] of tosses of a fair 
coin until two consecutive heads appear. The problem of finding the expected 
number of tosses of a p-coin until k consecutive heads appear leads to clas-
sical generalizations of the Fibonacci numbers. 

First consider tossing a fair coin and waiting for two consecutive heads. 
Let 0n be the set of all sequences of H and T of length n which terminate in 
BE and have no other occurrence of two consecutive heads. Let Sn be the num-
ber of sequences in 0n. Any sequence in 0n either begins with T, followed by 
a sequence in 0n-i, or begins with ET followed by a sequence in Cn_2. Thus, 

(1) Sn = Sn-1 + Sn-2, Si = 0, S2 = 1. 

Consequently, Sn-i = Fny the nth Fibonacci number. The probability of 
termination in n trials is Sn/2n. Letting 

^ ) = Z "n̂ n> 
2 

and using the generating function (1 - x - x2) ~l for the Fibonacci numbers, 
yields g{x) = x2/(1 - x - x2). Hence, the expected number of trials is 

J2nSn/2n = (1/2)̂ (1/2) = 6. 
n = l 

We generalize this result to the following 

Tk<lOKQjn'. Consider tossing a p-coin, Pr(E) = p, repeatedly until k consec-
utive heads appear. If Pn is the probability of terminating in exactly n 
trials (tosses), then the generating function 

(2) G(x) =Y,Fnxn is given by G(x) = (px) U-px) 
k 1 - x + -^ ^-(px)k + 1 

The expected number of trials, Gr(l) is 

(3) 1/p + 1/p2 + ... + l/pk = r 1 ' X 
k 

- 1 
P\ 

VtiOO^: Let 0n be the set of all sequences of H and T of length n which 
terminate in k heads and have no other occurrence of k consecutive heads. 
Let Sn be the number of sequences in 0n and Pn = Pr(On) be the probability 
of the event 0n. One possibility is that a sequence in 0n begins wi h a T, 
followed by a sequence in 0n_i\ the probability of this is 


